满分5 > 初中数学试题 >

(2003•无锡)已知:如图,四边形ABCD为菱形,AF⊥AD交BD于点E,交B...

(2003•无锡)已知:如图,四边形ABCD为菱形,AF⊥AD交BD于点E,交BC于点F.
(1)求证:AD2=manfen5.com 满分网DE•DB;
(2)过点E作EG⊥AF交AB于点G,若线段BE、DE(BE<DE)的长是方程x2-3mx+2m2=0(m>0)的两个根,且菱形ABCD的面积为manfen5.com 满分网,求EG的长.

manfen5.com 满分网
(1)连接AC交BD于O,根据菱形的性质可得到△AOD∽△EAD,根据相似三角形的对应边成比例即可得到结果; (2)先解二次方程,求出BE,DE的值,直接利用(1)的结果,可求出AD的值,再利用勾股定理及三角函数求得AE,EF,BF的值,根据比例线段求得EG的长,再根据菱形的面积可求出m的值,那么EG就求出来了. 解法一:(1)证明:连接AC交BD于点O(1分) ∵四边形ABCD为菱形 ∴AC⊥BD,BO=OD(2分) ∵AE⊥AD ∴△AOD∽△EAD ∴(3分) ∴AD2=OD×ED ∴AD2=DE×BD(4分) (2)【解析】 解方程x2-3mx+2m2=0得x1=m,x2=2m ∵BE<DE ∴BE=m,DE=2m(5分) ∵AD2=DE×BD ∴AD=m(6分) 在Rt△BEF中,DE=2m,AD=m ∴AE=m,∠ADB=30° 在Rt△ADE中,∠EBF=30°,BE=m ∴EF=m,∴AF=m(7分) ∵SABCD=AD×AF=m×m=6 ∴m2=4 ∴m=±2(负值舍去) ∴m=2(8分) ∵EG⊥AF,AD⊥AF ∴GE∥AD ∴ ∴GE=(9分) 解法二:(1)证:取DE的中点G(1分) 在Rt△EAD中,AG=DG=EG ∴∠GAD=∠GDA(2分) ∵四边形ABCD为菱形 ∴AB=AD ∴∠ABD=∠ADB ∴∠GAD=∠ABD,∠ADB=∠ADB ∴△ADG∽△BDA(3分) ∴ ∴AD2=DG×BD=DE×BD(4分) (2)【解析】 ∵x2-3mx+2m2=0 ∴x1=m,x2=2m ∵BE<DE ∴BE=m,DE=2m(5分) ∵AD2=DE×BD ∴AD=m(6分) Rt△AOD中,AD=m,OD=m, ∴AO=m, ∴AC=m(7分) ∵SABCD=AC×BD=×m×3m=6 ∴m2=4,∴m=±2(负值舍去) ∴m=2(8分) ∵EG⊥AE,AD⊥AF ∴GE∥AD ∴ ∴GE=(9分)
复制答案
考点分析:
相关试题推荐
(2003•深圳)如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

manfen5.com 满分网 查看答案
(2006•兰州)如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=manfen5.com 满分网,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.

manfen5.com 满分网 查看答案
(2003•宁夏)如图,在△ABC中,AB=AC=5,BC=6,F为BC的中点.P是BF上的一点,过点P作BC的垂线交AB于D,交CA的延长线于E.若设BP=x,那么,图中有些量(线段、面积等)可以看作x的函数,如,PC=6-x,PF=3-x等.除以上两例外,请你再写出一个关于x的函数解析式,并加以证明.(不要添加辅助线和其它字母).

manfen5.com 满分网 查看答案
(2003•烟台)如图,AB为半圆的直径,O为圆心,AB=6,延长BA到F,使FA=AB,若P为线段AF上的一个动点(不与A重合),过P点作半圆的切线,切点为C,过B点作BE⊥PC交PC的延长线于E,设AC=x,AC+BE=y,求y与x的函数关系式及x的取值范围.

manfen5.com 满分网 查看答案
(2003•南宁)如图所示,已知A,B两点的坐标分别为(28,0)和(0,28).动点P从A点开始在线段AO上以每秒3个单位的速度向原点O运动,动直线EF从x轴开始每秒1个单位的速度向上平行移动(即EF∥x轴),并且分别与y轴,线段AB交于E,F点,连接FP,设动点P与动直线EF同时出发,运动时间为t秒.
(1)当t=1秒时,求梯形OPFE的面积,当t为何值时,梯形OPFE的面积最大,最大面积是多少?
(2)当梯形OPFE的面积等于三角形APF的面积时,求线段PF的长;
(3)设t的值分别取t1,t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.