满分5 > 初中数学试题 >

(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直...

(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与BC1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.
manfen5.com 满分网manfen5.com 满分网
(1)求manfen5.com 满分网的值;
(2)求MB、NB的长;
(3)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.
(1)本题可通过相似三角形A1B1M和NBM得出的关于NB,A1B1,MB,MB1的比例关系式来求,比例关系式中A1B1,BB1均为正方形的边长,长度都是1,因此可将它们的值代入比例关系式中,将所得的式子经过变形即可得出所求的值; (2)由于直线MN将图(1)的图形分成面积相等的两部分,因此△BMN的面积为,由此可求出MB•NB的值,根据(1)已经得出的MB+NB=MB•NB可求出MB+NB的值,由此可根据韦达定理列出以MB,NB为根的一元二次方程,经过解方程即可求出MB、NB的值; (3)根据(2)的结果,不难得出B1M=EN,由于折叠后E与B点重合,因此B1M=BN,那么四边形B1MNB是个矩形,因此MN的长为正方形的边长. 【解析】 (1)∵△A1B1M∽△NBM且A1B1=BB1=1, ∴, 即 整理,得MB+NB=MB•NB, 两边同除以MB•NB得 ; (2)由题意得, 即MB•NB=5, 又由(1)可知MB+NB=MB•NB=5, ∴MB、NB分别是方程x2-5x+5=0的两个实数根. 解方程,得x1=,x2=; ∵MB<NB, ∴MB=,NB=; (3)由(2)知B1M=-1=, EN=4-=, ∵图(2)中的BN与图(1)中的EN相等, ∴BN=B1M; ∴四边形BB1MN是矩形, ∴MN的长是1.
复制答案
考点分析:
相关试题推荐
(2003•厦门)如图,BD、BE分别是∠ABC与它的邻补角∠ABP的平分线,AE⊥BE,AD⊥BD,E、D为垂足.
(1)求证:四边形AEBD是矩形;
(2)若manfen5.com 满分网=3,F、G分别为AE、AD上的点,FG交AB于点H,且manfen5.com 满分网=3,求证:△AHG是等腰三角形.

manfen5.com 满分网 查看答案
(2003•肇庆)如图,已知矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F,FG∥DA与AB交于点G.
求证:(1)BC=BF;(2)GB•DC=DE•BC.

manfen5.com 满分网 查看答案
(2003•无锡)已知:如图,四边形ABCD为菱形,AF⊥AD交BD于点E,交BC于点F.
(1)求证:AD2=manfen5.com 满分网DE•DB;
(2)过点E作EG⊥AF交AB于点G,若线段BE、DE(BE<DE)的长是方程x2-3mx+2m2=0(m>0)的两个根,且菱形ABCD的面积为manfen5.com 满分网,求EG的长.

manfen5.com 满分网 查看答案
(2003•深圳)如图,已知△ABC,∠ACB=90°,AC=BC,点E、F在AB上,∠ECF=45°.
(1)求证:△ACF∽△BEC;
(2)设△ABC的面积为S,求证:AF•BE=2S;
(3)试判断以线段AE、EF、FB为边的三角形的形状并给出证明.

manfen5.com 满分网 查看答案
(2006•兰州)如图,已知P为∠AOB的边OA上的一点,以P为顶点的∠MPN的两边分别交射线OB于M、N两点,且∠MPN=∠AOB=α(α为锐角).当∠MPN以点P为旋转中心,PM边与PO重合的位置开始,按逆时针方向旋转(∠MPN保持不变)时,M、N两点在射线OB上同时以不同的速度向右平行移动.设OM=x,ON=y(y>x>0),△POM的面积为S.若sinα=manfen5.com 满分网,OP=2.
(1)当∠MPN旋转30°(即∠OPM=30°)时,求点N移动的距离;
(2)求证:△OPN∽△PMN;
(3)写出y与x之间的关系式;
(4)试写出S随x变化的函数关系式,并确定S的取值范围.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.