(2003•辽宁)(1)如图(a),已知直线AB过圆心O,交⊙O于A、B,直线AF交⊙O于F(不与B重合),直线l交⊙O于C、D,交AB于E,且与AF垂直,垂足为G,连接AC、AD.求证:①∠BAD=∠CAG;②AC•AD=AE•AF;
(2)在问题(1)中,当直线l向上平行移动,与⊙O相切时,其他条件不变.
①请你在图(b)中画出变化后的图形,并对照图(a),标记字母;
②问题(1)中的两个结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
考点分析:
相关试题推荐
(2003•茂名)已知:如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,BE与AD交于点F,连接DE.
求证:(1)△DCE是等腰三角形;(2)AB•FE=AF•BD.
查看答案
(2003•成都)已知:如图,BE是△ABC的外接圆O的直径,CD是△ABC的高.
(1)求证:AC•BC=BE•CD;
(2)已知CD=6,AD=3,BD=8,求⊙O的直径BE的长.
查看答案
(2003•苏州)如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在
上取一点D,分别作直线PA、ED,交直线AB于点F、M.
(1)求∠COA和∠FDM的度数;
(2)求证:△FDM∽△COM;
(3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在
上,仍作直线PA、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM∽△COM?证明你的结论.
查看答案
(2003•温州)如图,AC是⊙O的直径,弦BD交AC于点E.
(1)求证:△ADE∽△BCE;
(2)若CD=OC,求sinB的值.
查看答案
(2003•泰安)已知:在等腰梯形ABCD中,AD∥BC,直线MN是梯形的对称轴,P是MN上的一点.直线BP交直线DC于F,交CE于E,且CE∥AB.
(1)若点P在梯形的内部,如图①.求证:BP
2=PE•PF;
(2)若点P在梯形的外部,如图②,那么(1)的结论是否成立?若成立,请证明;若不成立,请说明理由.
查看答案