满分5 > 初中数学试题 >

(2003•北京)已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为...

(2003•北京)已知:在△ABC中,AD为∠BAC的平分线,以C为圆心,CD为半径的半圆交BC的延长线于点E,交AD于点F,交AE于点M,且∠B=∠CAE,FE:FD=4:3.
(1)求证:AF=DF;
(2)求∠AED的余弦值;
(3)如果BD=10,求△ABC的面积.

manfen5.com 满分网
(1)欲证AF=DF,可以证明△AEF≌△DEF得出; (2)求∠AED的余弦值,即求ME:DM,由已知条件,勾股定理,切割线定理的推论可以求出; (3)根据△ABC的面积公式求出BC,AN的长是关键,根据题意由三角函数及相似比即可求出. (1)证明:∵AD平分∠BAC ∴∠BAD=∠DAC ∵∠B=∠CAE ∴∠BAD+∠B=∠DAC+∠CAE ∵∠ADE=∠BAD+∠B ∴∠ADE=∠DAE ∴EA=ED ∵DE是半圆C的直径 ∴∠DFE=90° ∴AF=DF(2分) (2)【解析】 连接DM ∵DE是半圆C的直径 ∴∠DME=90° ∵FE:FD=4:3 ∴可设FE=4x,则FD=3x ∴DE=5x ∴AE=DE=5x,AF=FD=3x ∵AF•AD=AM•AE ∴3x(3x+3x)=AM•5x ∴AM=x ∴ME=AE-AM=5x-x=x 在Rt△DME中,cos∠AED=(5分) (3)【解析】 过A点作AN⊥BE于N ∵cos∠AED= ∴sin∠AED= ∴AN=AE=x 在△CAE和△ABE中 ∵∠CAE=∠B,∠AEC=∠BEA ∴△CAE∽△ABE ∴ ∴AE2=BE•CE ∴(5x)2=(10+5x)•x ∴x=2 ∴AN=x= ∴BC=BD+DC=10+×2=15 ∴S△ABC=BC•AN=×15×=72(8分).
复制答案
考点分析:
相关试题推荐
(2003•青海)如图,已知:AB是⊙O的直径,⊙O过AC的中点D,DE⊥BC,垂足为E,
求证:
(1)DE是⊙O的切线;
(2)CD2=CE•CB.

manfen5.com 满分网 查看答案
(2003•泰州)已知:如图,⊙O与⊙O1内切于点A,AO是⊙O1的直径,⊙O的弦AC交⊙O1于点B,弦DF经过点B且垂直于OC,垂足为点E.
(1)求证:DF与⊙O1相切;
(2)求证:2AB2=AD•AF;
(3)若AB=manfen5.com 满分网,cos∠DBA=manfen5.com 满分网,求AF和AD的长.

manfen5.com 满分网 查看答案
(2003•无锡)已知:如图,四边形ABCD为正方形,以AB为直径的半圆O1和以O1C为直径的⊙O2交于点F,连CF并延长交AD于点H,FE⊥AB于点E,BG⊥CH于点G.
(1)求证:BC=AE+BG;
(2)连AF,当正方形ABCD的边长为6时,求四边形ABGF的面积.

manfen5.com 满分网 查看答案
(2005•常德)如图,AB是⊙O的直径,BC是⊙O的弦,⊙O的割线PDE垂直AB于点F,交BC于点G,连接PC,∠BAC=∠BCP,求解下列问题:
(1)求证:CP是⊙O的切线.
(2)当∠ABC=30°,BG=manfen5.com 满分网,CG=manfen5.com 满分网时,求以PD、PE的长为两根的一元二次方程.
(3)若(1)的条件不变,当点C在劣弧AD上运动时,应再具备什么条件可使结论BG2=BF•BO成立?试写出你的猜想,并说明理由.

manfen5.com 满分网 查看答案
(2008•芜湖)在Rt△ABC中,BC=9,CA=12,∠ABC的平分线BD交AC与点D,DE⊥DB交AB于点E.
(1)设⊙O是△BDE的外接圆,求证:AC是⊙O的切线;
(2)设⊙O交BC于点F,连接EF,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.