满分5 > 初中数学试题 >

(2004•云南)如图,已知△ABC内接于⊙O,AE切⊙O于点A,BC∥AE. ...

(2004•云南)如图,已知△ABC内接于⊙O,AE切⊙O于点A,BC∥AE.
(1)求证:△ABC是等腰三角形;
(2)设AB=10cm,BC=8cm,点P是射线AE上的点,若以A、P、C为顶点的三角形与△ABC相似,问这样的点有几个并求AP的长.

manfen5.com 满分网
(1)利用弦切角定理及平行线的性质,证明∠B=∠C,得出△ABC是等腰三角形; (2)由于∠CAP=∠B,那么以A、P、C为顶点与△ABC相似的三角形只有△CAP1或△P2AC,再根据相似三角形的性质求出AP的长. (1)证明:∵BC∥AE, ∴∠BCA=∠CAE, 又∵AE切⊙O于点A, ∴∠CAE=∠ABC, ∴∠BCA=∠ABC, ∴AB=AC, 即△ABC是等腰三角形; (2)【解析】 射线AE上满足条件的点有两个. ①过点C作AB的平行线交AE于点P1. ∵BC∥AE, ∴ABCP1为平行四边形, ∴AP1=BC=8. ②过点C作⊙O的切线交AE于点P2, ∴∠P2AC=∠ABC, 又∠P2CA=∠ACB, ∴△AP2C∽△CAB, ∴AP2:AC=AC:BC, ∴AP2=AC2:BC=12.5.
复制答案
考点分析:
相关试题推荐
(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路ABmanfen5.com 满分网-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=manfen5.com 满分网厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.
查看答案
(2002•曲靖)已知:如图,边长为2manfen5.com 满分网的等边三角形ABC内接于⊙O,点D在manfen5.com 满分网上运动,但与A、C两点不重合,连接AD并延长交BC的延长结于P.
(1)求⊙O的半径;
(2)设AD为x,AP为y,写出y与x的函数关系式及自变量x的取值范围;
(3)D点在运动过程中是否存在这样的位置,使得△BDP成为以DB、DP为腰的等腰三角形?若存在,请你求出此时AD的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
manfen5.com 满分网(2002•达州)已知,如图,PA切⊙O于点A,割线PD交⊙O于点C、D,∠P=45°,弦AB⊥PD,垂足为E,且BE=2CE,DE=6,CF⊥PC,交DA的延长线于点F.求tan∠CFE的值.
查看答案
(2002•昆明)如图,⊙O是等边△ABC的外接圆,AB=2,M、N分别是边AB、AC的中点,直线MN交⊙O于E、F两点,BD∥AC交直线MN于点D.求出图中线段DM上已有的一条线段的长.

manfen5.com 满分网 查看答案
(2002•甘肃)(在下面的(I)(II)两题中选做一题,若两题都做,按第(I)题评分)
(I)如图,在△ABC中,AB=4,BC=3,∠B=90°,点D在AB上运动,但与A、B不重合,过B、C、D三点的圆交AC于E,连接DE.
(1)设AD=x,CE=y,求y与x之间的函数关系式,并指出自变量x的取值范围;
(2)当AD长为关于x的方程2x2+(4m+1)x+2m=0的一个整数根时,求m的值.

(II)如图,在直角坐标系xOy中,以点A(0,-3)为圆心作圆与x轴相切,⊙B与⊙A外切干点P,B点在x轴正半轴上,过P点作两圆的公切线DP交y轴于D,交x轴于C,
(1)设⊙A的半径为r1,⊙B的半径为r2,且r2=manfen5.com 满分网r1,求公切线DP的长及直线DP的函数解析式,
(2)若⊙A的位置、大小不变,点B在X轴正半轴上移动,⊙B与⊙A始终外切.过D作⊙B的切线DE,E为切点.当DE=4时,B点在什么位置?从解答中能发现什么?

manfen5.com 满分网 manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.