满分5 > 初中数学试题 >

(2002•宁夏)用两种方法解答: 如图,矩形ABCD外切于半圆,AD与半圆相切...

(2002•宁夏)用两种方法解答:
如图,矩形ABCD外切于半圆,AD与半圆相切于F,BC是半圆的直径,O为圆心,且BC=10cm,对角线AC交半圆于P,PE⊥BC于E.求P到BC的距离.

manfen5.com 满分网
解法(一):连接OF,先利用勾股定理求出AC的长,再用切割线定理求出AP的长,根据相似三角形的性质解答即可; 解法(二):连接BP,勾股定理求出AC的长,证明△CPB∽△CBA,相似三角形的性质PC的长,再证明△CPE∽△CAB,求出PE的长,即为所求. 【解析】 解法(一):连接OF, ∵BC=10cm, ∴OF=OB=5cm, 在Rt△ABC中,AB=5cm,BC=10cm, ∴AC===5, 又∵AB、AC分别是⊙O的切线和割线, ∴AB2=AP•AC,即25=5AP, 解得,AP=, ∴PC=AC-AP=5-=4, 在Rt△ABC与Rt△PEC中, ∵∠PCE=∠PCE, ∴Rt△ABC∽Rt△PEC, ∴=, ∴PE===4cm; 解法(二):连接OF、BP, ∵AD与半圆O相切于F, ∴OF⊥AD, ∵ABCD是矩形, ∴ABOF是矩形, ∴AB=OF=0.5BC=5cm, ∵BC是半圆⊙O的直径, ∴∠BPC=90°, ∵PE⊥BC, ∴△PEB∽△CEP, ∴PE:EC=BE:PE, 设PE=xcm, EC=ycm, 则x:y=(10-y):x, ∴x2=y(10-y), ∴∠PCE=∠ACB, ∠ABC=∠PEC=90°, ∴△ABC∽△PEC, ∴PE:AB=EC:BC, 则x:5=y:10, ∴y=2x, 解得x1=0(舍去), x2=4, ∴PE=4cm, ∴P到AB的距离是4c.
复制答案
考点分析:
相关试题推荐
(2002•潍坊)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13厘米,BC=16厘米,CD=5厘米,AB为⊙O的直径,动点P沿AD方向从点A开始向点D以1厘米/秒的速度运动,动点Q沿CB方向从点C开始向点B以2厘米/秒的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动.
(1)求⊙O的直径;
(2)求四边形PQCD的面积y关于P、Q运动时间t的函数关系式,并求当四边形PQCD为等腰梯形时,四边形PQCD的面积;
(3)是否存在某一时刻t,使直线PQ与⊙O相切?若存在,求出t的值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2002•宜昌)如图1,已知BC是圆O的直径,线段RQ∥BC,A是RQ上的任意一点,AF与圆O相切于点F,连接AB与圆O相交于点M,D是AB上一点,AD=AF,DE垂直于AB并与AC的延长线交于点E.
(1)当点A处于图2中A的位置时,AC与圆O相切于点C,求证:△ADE≌△ACB;
(2)当点A处于图3中A1的位置时,A1F:A1E=1:2,manfen5.com 满分网.求角BCA1的大小;
(3)图1中,若BC=4,RQ与BC的距离为3,那么△ADE的面积S与点A的位置有没有关系,请说明理由.
manfen5.com 满分网
查看答案
(2002•泸州)已知,如图,AB为半圆O的直径,C为OB上一点,OC:CB=1:3,DC⊥AB交半圆O于D,过D作半圆O的切线交AB的延长线于E.
(1)若BE=12,求半圆O的半径长;
(2)在弧BD上任取一点P(不与B、D重合),连接EP并延长交弧AD于F,设PC=x,EF=y,求y关于x的函数关系式,并指出自变量x的取值范围.

manfen5.com 满分网 查看答案
(2004•云南)如图,已知△ABC内接于⊙O,AE切⊙O于点A,BC∥AE.
(1)求证:△ABC是等腰三角形;
(2)设AB=10cm,BC=8cm,点P是射线AE上的点,若以A、P、C为顶点的三角形与△ABC相似,问这样的点有几个并求AP的长.

manfen5.com 满分网 查看答案
(2002•南昌)如图,正三角形ABC的边长为6厘米,⊙O的半径为r厘米,当圆心O从点A出发,沿着线路ABmanfen5.com 满分网-BC-CA运动,回到点A时,⊙O随着点O的运动而移动.
(1)若r=manfen5.com 满分网厘米,求⊙O首次与BC边相切时,AO的长.
(2)在⊙O移动过程中,从切点的个数来考虑,相切有几种不同的情况写出不同情况下X的取值范围及相应的切点个数.
(3)设⊙O在整个移动过程中,在△ABC内部、⊙O未经过的部分的面积为S,在S>0时,求S关于r的函数解析式,并写出自变量r的取值范围.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.