满分5 > 初中数学试题 >

(2002•杭州)如图,⊙O1与⊙O2外切于点C,⊙O1与⊙O2的连心线与外公切...

(2002•杭州)如图,⊙O1与⊙O2外切于点C,⊙O1与⊙O2的连心线与外公切线相交于点P,外公切线与两圆的切点分别为A、B,且AC=4,BC=5.
(1)求线段AB的长;
(2)证明:PC2=PA•PB.

manfen5.com 满分网
(1)由题意可知AO1和BO2平行,根据同旁内角互补,可知∠AO1O2+∠BO2O1=180°,根据两个三角形内角和为360°,且O1A=O1C,O2B=O2C,可知∠ACO1+∠BCO2=90°,然后根据勾股定理求出AB; (2)证明PC2=PA•PB,即证△PAC∽△PCB,而在这两个三角形中已经有一个公共角∠P,只需再找一组角即可,根据(1)可得等角的余角相等,可知∠PCA=∠PBC,即可知相似,然后得出等积式. (1)【解析】 PAB切⊙O1与⊙O2与A、B, ∴AO1⊥PA,BO2⊥PB ∴AO1∥BO2 ∴∠AO1O2+∠BO2O1=180° 又在△AO1C和△BO2C中,内角和为360° ∴∠O1AC+∠O1CA+∠O2BC+∠O2CB=180° ∵O1A=O1C,O2B=O2C ∴∠O1AC=∠O1CA,∠O2BC=∠O2CB ∴∠ACO1+∠BCO2=90° ∴∠ACB=90° ∴在RT△ABC中,AB=; (2)证明:由(1),知∠ACO1+∠BCO2=90° 而∠O2BC=∠O2CB,且∠O2BC+∠CBA=90° ∴∠PCA=∠PBC 又∠P为公共角 ∴△PAC∽△PCB ∴ 即PC2=PA•PB.
复制答案
考点分析:
相关试题推荐
(2002•黄石)如图,已知⊙O的圆心在坐标原点,半径为2,过圆上一点T(manfen5.com 满分网manfen5.com 满分网)的切线交x轴于A点,交y轴于B点.
(1)求OA、OB的长;
(2)在切线AB上取一点C,以C为圆心,半径为r的⊙C与⊙O外切于P点,两圆的内公切线PM交OT的延长线于M,过M点作⊙C的切线MN,切点为N.求证:MN=TC且MN∥TC;
(3)若(2)中的⊙C的圆心在AB上移动且始终与⊙O外切(即r在变化),N点坐标为(x,y),问N点的坐标x,y能否写成与r无关的关系式?若能,请写出关系式;若不能,请说明理由.

manfen5.com 满分网 查看答案
(2002•武汉)已知:如图,⊙O和⊙O1内切于A,直线OO1交⊙O于另一点B、交⊙O1于另一点F,过B点作⊙O1的切线,切点为D,交⊙O于C点,DE⊥AB,垂足为E.
(1)求证:CD=DE;
(2)若将两圆内切改为外切,其它条件不变,(1)中的结论是否成立?请证明你的结论.

manfen5.com 满分网 查看答案
(2002•浙江)如图,已知半圆O的直径AB=10,⊙O1与半圆O内切干点C,与AB相切干点D,
(1)求证:CD平分∠ACB;
(2)若AC:CB=1:3,求△CDB的面积S△CDB
(3)设AC:CB=x(x>0),⊙O1的半径为y,请用含x的代数式表示y.

manfen5.com 满分网 查看答案
(2002•山西)已知:如图,A是⊙O1、⊙O2的一个交点,点M是O1O2的中点,过点A的直线BC垂直于MA,分别交⊙O1、⊙O2于B、C.
(1)求证:AB=AC;
(2)若O1A切⊙O2于点A,弦AB、AC的弦心距分别为dl、d2,求证:d1+d2=O1O2
(3)在(2)条件下,若d1d2=1,设⊙O1、⊙O3的半径分别为R、r,求证:R2+r2=manfen5.com 满分网
manfen5.com 满分网
查看答案
(2002•吉林)如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.