满分5 > 初中数学试题 >

(2002•济南)如图,已知AB=AC+BD,∠CAB=∠ABD=90°AD交B...

(2002•济南)如图,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P与AB相切于点Q.设AC=a,BD=b(a≤b).
(1)求⊙P的半径r;
(2)以AB为直径在AB的上方作半圆O(用尺规作图,保留痕迹,不写作法),请你探索⊙O与⊙P的位置关系,做出判断并加以证明;
(3)设a=2,b=4,能否在半圆O中,再画出两个与⊙P同样大小的⊙M和⊙N,使这3个小圆两两相交,并且每两个小圆的公共部分的面积都小于manfen5.com 满分网π?请说出你的结论,并给出证明.

manfen5.com 满分网
(1)易证得△BPQ∽△BCA,△APQ∽△ADB,得到=,=,故可求得r的值; (2)作出AB的中垂线交于AB于点O,以点O为圆心,AO为半径作半圆,即可,由于⊙O的半径R=,⊙P的半径为r=,可得到AQ===a,OQ=-a=,连接PO,由勾股定理得到PO=R-r,故⊙O与⊙P相切; (3)用反证法判断. 【解析】 (1)如图1,连接PQ, ∵⊙P与AB相切于Q ∴PQ⊥AB且PQ=r ∵∠CAB=∠ABD=90° ∴△BPQ∽△BCA,△APQ∽△ADB ∴=,= ∴= ∴r=; (2)如图2:⊙O与⊙P相切, 证明:∵⊙O的半径R= ∴Rr= ∴AQ===a OQ=-a= 连接PO 则PO===-=R-r ∴⊙O与⊙P相切; (3)由(2)知,半圆O的半径==3, 假设符合要求的图形存在,每两个圆的公共部分的面积分别为SPM、SMN、SPN,则它们均小于π,又设每个小圆的面积为S,三个小圆公共部分的面积为SPMN,则三个小圆的覆盖面积=3S-(SPM+SMN+SPN)+SPMN>3π•()2-π+SPMN≥π=π=半圆O的面积,而这是不可能的,故不能在这个半圆O中画出符合要求的⊙M和⊙N.
复制答案
考点分析:
相关试题推荐
(2002•济南)(1)在生活中需测量一些球的足球、篮球)的直径.某校研究性学习小组,通过实验发现下面的测量方法:如图,将球放在水平的桌面上,在阳光的斜射下,得到球的影子AB,设光线DA、CB分别与球相切于点E、F,则EF即为球的直径.若测得AB的长为41.5cm,∠ABC=37°.请你计算出球的直径(精确到1cm);





(2)有一特殊材料制成的质量为30克的泥块,现把它切开为大小两块,将较大泥块放在一架不等臂天平的左盘中,称得质量为27克;又将较小泥块放在该天平的右盘中,称得质量为8克.若只考虑该天平的臂长不等,其他因素忽略不计,请你依据杠杆的平衡原理,求出较大泥块和较小泥块的质量.

manfen5.com 满分网 查看答案
(2002•嘉兴)如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.
(1)求证:△ADE∽△ABC;
(2)设⊙D与BC交于点F,当CF=2时,求CD的长;
(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.

manfen5.com 满分网 查看答案
(2002•荆州)如图,AB是⊙O的直径,P为AB延长线上一点,PD切⊙O于点C,BC和AD的延长线相交于点E,且AD⊥PD.
(1)求证:AB=AE;
(2)当AB:BP为何值时,△ABE为等边三角形并说明理由.

manfen5.com 满分网 查看答案
(2002•兰州)如图,在Rt△ABC中,∠A=90°,以AB为直径的半圆交BC于D,过D作圆的切线交AC于E.
求证:(1)AE=CE;
(2)CD•CB=4DE2

manfen5.com 满分网 查看答案
(2002•丽水)如图,在⊙O中,直径BC为10,点A是⊙O上的一个点,∠ABC的平分线交⊙O于点E,交AC于点F.过点E作⊙O的切线,交BC的延长线于虑D,连接CE.
(1)求证:∠ACE=∠DEC′;
(2)若AB=AE,求AF的长;
(3)如果点A由点B出发,在⊙O的圆周上运动,当点A在什么位置时,AE与BD互相平行?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.