(2002•湖州)已知,如图,四边形ABCD是矩形,AB=1,AD=2,M是CD边上一点(不与C、D重合),以BM为直径画半圆交AD于E、F,连接BE,ME.
(1)求证:AE=DF;
(2)求证:△AEB∽△DME;
(3)设AE=x,四边形ABMD的面积为y,求y关于x的函数关系式和自变量的取值范围.
考点分析:
相关试题推荐
(2002•荆州)如图,在平面直角坐标系中,⊙M与x轴相切于A点,与y轴相交于B、C两点,且A、B两点的坐标分别为(2,0)、(0,1).
(1)求点C的坐标和⊙M的半径;
(2)设点P在x轴的负半轴上,连接PB并延长,交⊙M于点D,若△ABD与△ABO相似,求PB•PD的值.
查看答案
(2002•深圳)如图,等腰梯形ABCD中,AD∥BC,AB=DC,以HF为直径的圆与AB、BC、CD、DA相切,切点分别是E、F、G、H.其中H为AD的中点,F为BC的中点.连接HG、GF.
(1)若HG和GF的长是关于x的方程x
2-6x+k=0的两个实数根,求⊙O的直径HF(用含k的代数式表示),并求出k的取值范围.
(2)如图,连接EG,DF.EG与HF交于点M,与DF交于点N,求
的值.
查看答案
(2002•苏州)如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.
(1)如果点Q的速度为每秒2个单位,
①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t的取值范围);
②求t为何值时,PQ∥OC?
(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,
①试用含t的代数式表示这时点Q所经过的路程和它的速度;
②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.
查看答案
(2002•达州)已知:如图,正方形ABCD中,O是AC与BD的交点,∠DAC的平分线AP交CD于点P,∠BDC的平分线DQ交AC于点Q.求证:
.
查看答案
(2002•三明)已知:正方形的边长为1
(1)如图①,可以算出正方形的对角线为______
查看答案