满分5 > 初中数学试题 >

(2002•河南)已知,如图,△ABC内接于⊙O1,AB=AC,⊙O2与BC相切...

(2002•河南)已知,如图,△ABC内接于⊙O1,AB=AC,⊙O2与BC相切于点B,与AB相交于点E,与⊙O1相交于点D,直线AD交⊙O2于点F,交CB的延长线于点G.
求证:(1)∠G=∠AFE;(2)AB•EB=DE•AG.

manfen5.com 满分网
(1)连接BD;若∠G=∠AFE成立,则EF必定和CG平行,那么一定有∠FEB=∠ABC;而在题中∠ABC=∠C,所以必须证明∠FEB=∠C,在这里可以以∠FDB为媒介;因为∠FEB和∠FDB为⊙O2中同弧所对圆周角相等,同时∠FDB又是⊙O1内接四边形的一个外角所以∠FDB=∠C,因此最终可证明结论成立. (2)证AB•EB=DE•AG,即证,而BE=BF可证,所以整个式子就又转化为;而作为来讲,由△ADE∽△ABF可得,由EF∥CG可得;由此可得出我们所要的结论. 证明:(1)连接BD. ∵∠FEB=∠FDB,∠FDB=∠C, ∴∠FEB=∠C. 又∵AB=AC, ∴∠ABC=∠C. ∴∠FEB=∠ABC. ∴EF∥CG. ∴∠G=∠AFE. (2)连接BF. ∵∠ADE=∠ABF,∠DAE=∠BAF, ∴△ADE∽△ABF. ∴. 又∵EF∥CG, ∴即. ∵∠BEF=∠ABC,∠ABC=∠BFE, ∴∠BEF=∠BFE. ∴BE=BF. ∴,即AB•EB=DE•AG.
复制答案
考点分析:
相关试题推荐
(2002•济南)如图,已知AB=AC+BD,∠CAB=∠ABD=90°AD交BC于P,⊙P与AB相切于点Q.设AC=a,BD=b(a≤b).
(1)求⊙P的半径r;
(2)以AB为直径在AB的上方作半圆O(用尺规作图,保留痕迹,不写作法),请你探索⊙O与⊙P的位置关系,做出判断并加以证明;
(3)设a=2,b=4,能否在半圆O中,再画出两个与⊙P同样大小的⊙M和⊙N,使这3个小圆两两相交,并且每两个小圆的公共部分的面积都小于manfen5.com 满分网π?请说出你的结论,并给出证明.

manfen5.com 满分网 查看答案
(2002•嘉兴)如图△ABC中,∠C=90°,AC=6,BC=3,点D在AC边上,以D为圆心的⊙D与AB切于点E.
(1)求证:△ADE∽△ABC;
(2)设⊙D与BC交于点F,当CF=2时,求CD的长;
(3)设CD=a,试给出一个a值使⊙D与BC没有公共点,并说明你给出的a值符合要求.

manfen5.com 满分网 查看答案
(2002•连云港)已知:如图1,PA切⊙O于A点,割线PCB交⊙O于C、B两点,D是线段BP上一点,且PD2=PB•PC,直线AD交⊙O于E点.
(1)求证:AD平分∠BAC;
(2)求证:AB•AC=AD•AE;
(3)若把题中条件“D是线段BP上一点”改为“D是线段BP延长线上一点”(如图2),则题(2)中的结论还成立吗?若成立,请给出证明,若不成立,请说明理由.
manfen5.com 满分网
查看答案
(2002•宁夏)用两种方法解答:
如图,矩形ABCD外切于半圆,AD与半圆相切于F,BC是半圆的直径,O为圆心,且BC=10cm,对角线AC交半圆于P,PE⊥BC于E.求P到BC的距离.

manfen5.com 满分网 查看答案
(2002•曲靖)已知:如图,⊙O的直径AB等于4,以OA为直径作⊙O1,BD切⊙O1于C,交⊙O于D,连接AC、OC.
(1)求tan∠CAO的值;(2)求BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.