满分5 > 初中数学试题 >

(2001•呼和浩特)如图,AB是△ABC外接圆O的直径,D为⊙O上一点,且DE...

(2001•呼和浩特)如图,AB是△ABC外接圆O的直径,D为⊙O上一点,且DE⊥CD交BC于E,求证:EB•CD=DE•AC.

manfen5.com 满分网
本题可通过构建相似三角形求解.延长DE交⊙O于F,连接CF;由CD⊥DE,可知CF必为⊙O的直径.连接AF、BF,由于四边形ACBF的对角线相等且互相平分,因此四边形ACBF是矩形. 可得AC=BF,∠EBF=90°;易证得△CED∽△FEB,可得出关于EB、CD、DE、BF的比例关系式,将AC=BF代入上式,可得出本题所证的结论. 证明:延长DE,交⊙O于F;连接CF,AF、BF; 由于CD⊥DF,即∠CDF=90°,因此CF必为⊙O的直径. ∵OA=OB=OC=OF, ∴四边形AFBC为矩形. ∴BF=AC,∠CBF=90°. ∴∠CDE=∠CBF=90°. ∵∠CED=∠FEB, ∴△CED∽△FEB, ∴EB:ED=BF:CD. ∴EB:ED=AC:CD. ∴EB•CD=DE•AC.
复制答案
考点分析:
相关试题推荐
(2001•陕西)已知△ABC内接⊙O.
(1)当点O与AB有怎样的位置关系时,∠ACB是直角;
(2)在满足(1)的条件下,过点C作直线交AB于D,当CD与AB有什么样的关系时,△ABC∽△CBD∽△ACD
(3)画出符合(1)(2)题意的两种图形,使图形中的CD=2cm.
查看答案
(2001•四川)已知:如图,AB为⊙O的直径,AC为弦,CD⊥AB于D.若AE=AC,BE交⊙O于点F,连接CF、DE.
求证:(1)AE2=AD•AB;
(2)∠ACF=∠AED.

manfen5.com 满分网 查看答案
(2001•内江)已知:如图,△ABC内接于⊙O,G是manfen5.com 满分网的中点,连接AG交BC于D,过D的直线交AB于E,交AC的延长线于F;
求证:AB•AC-BD•DC=AE•AF-ED•DF.

manfen5.com 满分网 查看答案
(2001•黑龙江)如图,直径为13的⊙O′经过原点O,并且与x轴、y轴分别交于A、B两点,线段OA、OB(OA>OB)的长分别是方程x2+kx+60=0的两根.
(1)求线段OA、OB的长;
(2)已知点C在劣弧OA上,连接BC交OA于D,当OC2=CD•CB时,求C点的坐标;
(3)在(2)问的条件下,在⊙O′上是否存在点P,使S△POD=S△ABD?若存在,求出点P的坐标;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(2001•呼和浩特)已知AB是⊙O的直径、弦CD⊥AB,垂足为E,弦AQ交CD于P,如果AB=10,CD=8,求:(1)DE的长;(2)AE的长;(3)AP•AQ的值.(要求:考生作图求解,图画在卷面右侧)
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.