满分5 > 初中数学试题 >

(2001•北京)如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线...

(2001•北京)如图,△ABC内接于⊙O,AB是⊙O的直径,PA是过A点的直线,∠PAC=∠B,
(1)求证:PA是⊙O的切线;
(2)如果弦CD交AB于E,CD的延长线交PA于F,AC=8,CE:ED=6:5,AE:EB=2:3,求AB的长和∠ECB的正切值.

manfen5.com 满分网
(1)要证PA是⊙O的切线,只要证∠PAO=90°即可,因为AB为直径,所以有∠CAB+∠CBA=90°,又∠PAC=∠B,所以∠CAB+∠PAC=90°即PA是⊙O的切线. (2)连接AD、BD;可设CE=6x,AE=2y,进而根据已知条件,用x、y表示出DE、BE的长,由相交弦定理,即可求得x、y的比例关系;易证得△AEC∽△BED,根据所得成比例线段,即可求得BD的长,同理可设BC=m,由△BEC∽△DEA,求得AD的表达式;在Rt△ADB和Rt△ACB中,可由勾股定理分别表示出AB2,即可得到关于m的方程,从而求出m的值,即BC的长,即可由勾股定理求得AB的长; 根据圆周角定理知:∠ECB=∠DAB,因此只需在Rt△ABD中,求出∠DAB的正切值即可. (1)证明:∵AB是⊙O的直径, ∴∠ACB=90°; ∴∠CAB+∠CBA=90°; 又∠PAC=∠B, ∴∠CAB+∠PAC=90°; ∴∠PAB=90°; 即PA是⊙O的切线. (2)【解析】 设CE=6x,AE=2y,则DE=5x,BE=3y; 由相交弦定理,得:AE•EB=CE•DE,即: 2y•3y=5x•6x,解得:x=y; ∵∠ACD=∠ABD,∠AEC=∠DEB, ∴△AEC∽△DEB,则有:; ∵AE=2y=2x,DE=5x, ∴,由于AC=8,则BD=4; 设BC=m,同理可求得AD=m; ∵AB是直径,∴△ACB、△ADB是直角三角形; 由勾股定理,得:AB2=AC2+BC2=AD2+BD2,即: 82+m2=(m)2+(4)2,解得m=6; 故BC=6,AD=2; ∴AB==10,tan∠ECB=tan∠DAB==2.
复制答案
考点分析:
相关试题推荐
(2001•吉林)如图,矩形ABCD,AD=8,DC=6,在对角线AC上取一点O,以OC为半径的圆切AD于E,交BC于F,交CD于G.
(1)求⊙O的半径R;
(2)设∠BFE=α,∠CED=β,请写出α,β,90°三者之间的关系式(只需写出一个)并证明你的结论.

manfen5.com 满分网 查看答案
(2001•江西)如图,⊙O1和⊙O2相交于A、B两点,⊙O1的弦AC与⊙O2相切,P是manfen5.com 满分网的中点,PA、PB的延长线分别交⊙O2于点E、F,PB交AC于D.
(1)求证:PC∥AF;
(2)求证:AE•PC=BE•PD;
(3)若A是PE的中点,则⊙O1与⊙O2是否是等圆?若不是等圆,请说明理由;若是等圆,请给出证明.

manfen5.com 满分网 查看答案
(2001•南京)如图1,在平面上,给定了半径为r的圆O,对于任意点P,在射线OP上取一点P′,使得OP•OP′=r2,这把点P变为点P的变换叫做反演变换,点P与点P′叫做互为反演点.
(1)如图2,⊙O内外各一点A和B,它们的反演点分别为A和B′.求证:∠A′=∠B;
(2)如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形.
manfen5.com 满分网
①选择:如果不经过点O的直线l与⊙O相交,那么它关于⊙O的反演图形是( )
A、一个圆;B、一条直线;C、一条线段;D、两条射线
②填空:如果直线l与⊙O相切,那么它关于⊙O的反演图形是______,该图形与圆O的位置关系是______
查看答案
(2001•武汉)已知:如图,⊙O1和⊙O2相交于A、B两点,过B点作⊙O1的切线交⊙O2于D点,连接DA并延长⊙O1相交于C点,连接BC,过A点作AE∥BC与⊙O相交于E点,与BD相交于F点.
(1)求证:EF•BC=DE•AC;
(2)若AD=3,AC=1,manfen5.com 满分网,求EF的长.

manfen5.com 满分网 查看答案
(2001•哈尔滨)已知:如图,CD是△ABC外角∠MCA的平分线,CD与三角形的外接圆交于点D.
(1)若∠BCA=60°,求证:△ABD为等边三角形;
(2)设点F为弧AD上一点,且弧AF=弧BC,DF的延长线交BA的延长线于点E.求证:AC•AF=DF•FE.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.