满分5 > 初中数学试题 >

(1999•河北)如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示...

(1999•河北)如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴.桥拱的DGD′部分为一段抛物线,顶点G的高度为8米,AD和A′D′的两侧高为5.5米的支柱,OA和OA′为两个方向的汽车通行区,宽都为15米,线段CD和C′D′为两段对称的上桥斜坡,其坡度为1:4.
(1)求桥拱DGD′所在抛物线的解析式及CC′的长;
(2)BE和B′E′为支撑斜坡的立柱,其高都为4米,相应的AB和A′B′为两个方向的行人及非机动车通行区.试求AB和A′B′的宽;
(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米.它能否从OA(或OA′)区域安全通过?请说明理由.

manfen5.com 满分网
(1)抛物线的对称轴是y轴,因而解析式一定是y=ax2+c的形式,根据条件可以求得抛物线上G,D的坐标分别是(0,8)和(15,5.5),利用待定系数法即可求解; (2)根据坡度的定义,即垂直高度与水平宽度的比,即可求解; (3)在抛物线解析式中,令x=4,得到的函数值与7+0.4=7.4米,进行比较即可判断. 【解析】 (1)设DGD′所在的抛物线的解析式y=ax2+c. 由题意得G(0,8),D(15,5.5). ∴ 解得 ∴DGD′所在的抛物线的解析式为y=-x2+8(4分) ∴,且AD=5.5, ∴AC=5.5×4=22(米) ∴CC′=2OC=2×(OA+AC)=2×(15+22)=74(米). 答:CC′的长为74米.(6分) (2)∵,BE=4 ∴BC=16(8分) ∴AB=AC-BC=22-16=6(米). 答:AB和A′B′的宽都是6米.(10分) (3)答:该大型货车可以从OA(或OA′)区域安全通过.(11分) 在y=-x2+8中,当x=4时, y=-×16+8=7(13分) ∵7-(7+0.4)=>0 该大型货车可以从OA(或OA′)区域安全通过.(14分)
复制答案
考点分析:
相关试题推荐
(1999•南京)某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,请你帮助设计方案.
查看答案
(1999•北京)已知:二次函数y=x2+2ax-2b+1和y=-x2+(a-3)x+b2-1的图象都经过x轴上两个不同的点M,N,求a,b的值.
查看答案
(1999•重庆)如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-1,与x轴交于点C,且∠ABC=90°
求:
(1)直线AB的解析式;
(2)抛物线的解析式.

manfen5.com 满分网 查看答案
(1999•西安)已知抛物线y=3x2+3x.
(1)通过配方,将抛物线的表达式写成y=a(x+h)2+k的形式(要求写出配方过程);
(2)求出抛物线的对称轴和顶点坐标.
查看答案
(1999•福州)已知:二次函数y=x2+bx+c的图象经过点A(-1,12)、B(2,-3).
(1)求该二次函数的解析式;
(2)用配方法把由(1)所得的解析式化为y=(x-h)2+k的形式,并求出该抛物线的顶点坐标和对称轴;
(3)求抛物线与x轴的两个交点C、D的坐标及△ACD的面积.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.