满分5 > 初中数学试题 >

(1999•广西)如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD...

(1999•广西)如图,△ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成一个矩形零件,使矩形的一边在BC上,其余两个顶点分别在AB、AC上.设该矩形的长QM=y毫米,宽MN=x毫米.
(1)求证:y=120-manfen5.com 满分网x;
(2)当x与y分别取什么值时,矩形PQMN的面积最大?最大面积是多少?
(3)当矩形PQMN的面积最大时,它的长和宽是关于t的一元二次方程t2-10pt+200q=0的两个根,而p、q的值又恰好分别是a,10,12,13,b这5个数据的众数与平均数,试求a与b的值.

manfen5.com 满分网
(1)易证△APN∽△ABC,根据相似三角形对应边的比等于对应高的比,即可求解; (2)矩形PQMN的面积S=xy,根据(1)中y与x的函数关系式,即可得到S与x之间的函数关系,根据函数的性质即可求解; (3)把(2)中求得的长于宽的数值,代入t2-10pt+200q=0即可求得p,q的数值,根据众数与中位数的定义即可求得a与b的值. (1)证明:根据已知条件易知:PN∥BC,AE⊥PN,PN=QM=y,DE=MN=x,(1分) ∴△APN∽△ABC.(2分) 从而有(3分) 即 ∴y=120-x(4分) (2)【解析】 设矩形PQMN的面积为S,则S=xy(5分) 即S=x(120-)(6分) 当x=-=40时,S有最大值为2400 (7分) 此时y==60 ∴x=40mm,y=60mm时,矩形PQMN的面积最大,最大面积为2400平方毫米.(8分) (3)【解析】 由根与系数的关系,得 解得p=10,q=12(9分) ∵a为10,12,13,b的众数为10, ∴有a=10或b=10.(10分) 当a=10时,有=12, 解得b=15 当b=10时,a=15.(11分) (注:只答a=10,b=15不扣分)
复制答案
考点分析:
相关试题推荐
(1999•河北)如图,这是某市一处十字路口立交桥的横断面在平面直角坐标系中的示意图,横断面的地平线为x轴,横断面的对称轴为y轴.桥拱的DGD′部分为一段抛物线,顶点G的高度为8米,AD和A′D′的两侧高为5.5米的支柱,OA和OA′为两个方向的汽车通行区,宽都为15米,线段CD和C′D′为两段对称的上桥斜坡,其坡度为1:4.
(1)求桥拱DGD′所在抛物线的解析式及CC′的长;
(2)BE和B′E′为支撑斜坡的立柱,其高都为4米,相应的AB和A′B′为两个方向的行人及非机动车通行区.试求AB和A′B′的宽;
(3)按规定,汽车通过该桥下时,载货最高处和桥拱之间的距离不得小于0.4米.今有一大型运货汽车,装载某大型设备后,其宽为4米,车载大型设备的顶部与地面的距离均为7米.它能否从OA(或OA′)区域安全通过?请说明理由.

manfen5.com 满分网 查看答案
(1999•南京)某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:
(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?
(2)要使商场平均每天赢利最多,请你帮助设计方案.
查看答案
(1999•北京)已知:二次函数y=x2+2ax-2b+1和y=-x2+(a-3)x+b2-1的图象都经过x轴上两个不同的点M,N,求a,b的值.
查看答案
(1999•重庆)如图,抛物线与直线y=k(x-4)都经过坐标轴的正半轴上A,B两点,该抛物线的对称轴x=-1,与x轴交于点C,且∠ABC=90°
求:
(1)直线AB的解析式;
(2)抛物线的解析式.

manfen5.com 满分网 查看答案
(1999•西安)已知抛物线y=3x2+3x.
(1)通过配方,将抛物线的表达式写成y=a(x+h)2+k的形式(要求写出配方过程);
(2)求出抛物线的对称轴和顶点坐标.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.