满分5 > 初中数学试题 >

(1999•黄冈)已知抛物线y=x2+3mx+18m2-m与x轴交于A(x1,0...

(1999•黄冈)已知抛物线y=manfen5.com 满分网x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C(0,b),O为原点.
(1)求m的取值范围;
(2)若mmanfen5.com 满分网,且OA+OB=3OC,求抛物线解析式及A,B,C的坐标;
(3)在(2)情形下,点P、Q分别从A、O两点同时出发(如图)以相同的速度沿AB、OC向B、C运动,连接PQ与BC交于M,设AP=k,问是否存在k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求所有k值;若不存在,请说明理由.

manfen5.com 满分网
(1)由于抛物线y=x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,则判别式△>0,解此不等式即可求出m的取值范围; (2)由抛物线与一元二次方程的关系以及OA+OB=3OC,可求出m的值,进而求出抛物线的解析式及A,B,C的坐标; (3)根据题意,当以P、B、M为顶点的三角形与△ABC相似时,由于点B与点B对应,则分两种情况.①P与A对应,②P与C对应.对于前一种情形,得到PQ∥AC,运用平行线分线段成比例定理可求出k值;对于后一种情形,得到△ABC∽△MBP,运用三角函数的定义及相似三角形的对应边成比例可求出k值. 【解析】 (1)依题意有△=(3m)2-4×(18m2-m)=m>0, ∴m>0;(3分) (2)∵m,∴x1<0,x2<0, 由OA+OB=3•OC,有-x1-x2=3(18m2-m), 24m=3(18m2-m), ∴m=0(舍去)或m=. ∴y=x2+.(6分) ∴A(-8,0),B(-4,0),C(0,4);(7分) (3)当PQ∥AC时,△ABC∽△PBM, 则即, ∴(9分) 当PQ不与AC平行, ∠CAB=∠PMB时,△ABC∽△MBP. 过B作AC的垂线,D为垂足. sinA=∴(10分) ∵∠ACB=∠MPB,∴Rt△CDB∽Rt△POQ.(11分) ∴∴ 即 显然0<k<4. ∴=,∴ ∴k=2. ∴存在k符合题目条件,即当k=或2时, 所得三角形与△ABC相似.(13分)
复制答案
考点分析:
相关试题推荐
(1999•昆明)已知:二次函数y=manfen5.com 满分网的图象与x轴从左到右的两个交点依次为A、B,与y轴交点为C;
(1)求A、B、C三点的坐标;
(2)求过B、C两点的一次函数的解析式;
(3)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量x的取值范围;
(4)是否存在这样的点P,使得PO=AO?若存在,求出点P的坐标;若不存在说明理由.
查看答案
(1999•辽宁)如图,抛物线y=ax2-3x+c交x轴正方向于A、B两点,交y轴正方向于C点,过A、B、C三点作⊙D.若⊙D与y轴相切.
(1)求a、c满足的关系式;
(2)设∠ACB=a,求tana;
(3)设抛物线顶点为P,判断直线PA与⊙D的位置关系.

manfen5.com 满分网 查看答案
(1999•内江)二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(x2,0)和B(x1,0)两点,A点在原点左方,B点在原点右方,与y轴交于C(0,y1),且知C点在原点上方,y1>x1,BC=10,x1,y1是方程x2-(k+9)x+3(k+11)=0的两根,直线y=mx+n过A、C两点,且tan∠CAB=4.
(1)求:A、B、C三点的坐标;
(2)求:过A、C两点的一次函数的解析式;
(3)求:过A、B、C三点的二次函数的解析式.
查看答案
(1999•南京)如果抛物线y=-x2+2(m-1)x+m+1与x轴都交于A,B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.
(1)求m的取值范围;
(2)若a:b=3:1,求m的值,并写出此时抛物线的解析式;
(3)设(2)中的抛物线与y轴交于点C,抛物线的顶点是M,问:抛物线上是否存在点P,使△PAB的面积等于△BCM面积的8倍?若存在,求出P点的坐标;若不存在,请说明理由.
查看答案
(1999•山西)如图,己知Rt△OAB的斜边OA在x轴正半轴上,直角顶点B在第一象限,OA=5,OB=manfen5.com 满分网
(1)求A、B两点的坐标;
(2)求经过O、A、B三点且对称轴平行于y轴的抛物线的解析式,并确定抛物线顶点的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.