满分5 > 初中数学试题 >

(1999•贵阳)如图,已知抛物线y=-x2+ax+b与x轴从左至右交于A、B两...

(1999•贵阳)如图,已知抛物线y=-x2+ax+b与x轴从左至右交于A、B两点,与y轴交于点C,且∠BAC=α,∠ABC=β,tanα-tanβ=2,∠ACB=90°.
(1)求点C的坐标;
(2)求抛物线的解析式;
(3)若抛物线的顶点为P,求四边形ABPC的面积.

manfen5.com 满分网
(1)根据抛物线的解析式知C(0,b),可设出A、B的坐标,在Rt△ACB中,CO⊥AB,根据射影定理可得到OA•OB=OC2,可由韦达定理用b表示出OA•OB和OC2的值,根据上述等量关系即可得到b的值,由此求得C点坐标. (2)分别表示出tanα、tanβ的值,根据两者的等量关系及韦达定理即可求得a的值,从而确定二次函数的解析式. (3)由抛物线的解析式,可求得P点坐标,进而可求得直线PC的解析式,延长PC交x轴于D,根据直线PC的解析式即可得到D点的坐标,那么四边形ABPC的面积即可由△PDB和△ADC的面积差求得. 【解析】 (1)根据题意设点A(x1,O)、点B(x2,O),且C(O,b); x1<0,x2>0,b>0, ∵x1,x2是方程-x2+ax+b=0的两根, ∴x1+x2=a,x1•x2=-b;(1分) 在Rt△ABC中,OC⊥AB, ∴OC2=OA•OB, ∵OA=-x1,OB=x2, ∴b2=-x1•x2=b,(2分) ∵b>0, ∴b=1, ∴C(0,1);(3分) (2)在Rt△AOC和Rt△BOC中, tanα-tanβ==--=-==2,(4分) ∴a=2, ∴抛物线解析式为:y=-x2+2x+1.(5分) (3)∵y=-x2+2x+1, ∴顶点P的坐标为(1,2), 当-x2+2x+1=0时,x=1±, ∴A(1-,0),B(1+,0),(6分) 延长PC交x轴于点D,过C、P的直线为y=x+1, ∴点D的坐标为(-1,0),(7分) S四边形ABPC=S△DPB-S△DCA =•|DB|•yp|AD|•yc =- =.(8分)
复制答案
考点分析:
相关试题推荐
(1999•哈尔滨)已知:如图,⊙O1与⊙O2外切于点O,以直线O1O2为x轴,O为坐标原点,建立平面直角坐标系.在x轴上方的两圆的外公切线AB与⊙O1相切于点A,与⊙O2相切于点B,直线AB交y轴于点c,若OA=3manfen5.com 满分网,OB=3.
(1)求经过O1、C、O2三点的抛物线的解析式;
(2)设直线y=kx+m与(1)中的抛物线交于M、N两点,若线段MN被y轴平分,求k的值;
(3)在(2)的条件下,点D在y轴负半轴上.当点D的坐标为何值时,四边形MDNC是矩形?

manfen5.com 满分网 查看答案
(1999•海淀区)已知二次函数y=ax2+bx+c,其中a>0,b2-4a2c2=0,它的图象与x轴只有一个交点,交点为A,与y轴交于点B,且AB=2.
(1)求二次函数解析式;
(2)当b<0时,过A的直线y=x+m与二次函数的图象交于点C,在线段BC上依次取D、E两点,若DE2=BD2+EC2,试确定∠DAE的度数,并简述求解过程.
查看答案
(1999•杭州)已知二次函数manfen5.com 满分网的图象与X轴的交点为A、B(点B在点A的右边),与y轴的交点为C.
(1)若△ABC为Rt△,求m的值;
(2)在△ABC中;若AC=BC,求∠ACB的正弦值;
(3)设△ABC的面积为S,求当m为何值时,S有最小值,并求这个最小值.
查看答案
(1999•黄冈)已知抛物线y=manfen5.com 满分网x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C(0,b),O为原点.
(1)求m的取值范围;
(2)若mmanfen5.com 满分网,且OA+OB=3OC,求抛物线解析式及A,B,C的坐标;
(3)在(2)情形下,点P、Q分别从A、O两点同时出发(如图)以相同的速度沿AB、OC向B、C运动,连接PQ与BC交于M,设AP=k,问是否存在k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求所有k值;若不存在,请说明理由.

manfen5.com 满分网 查看答案
(1999•昆明)已知:二次函数y=manfen5.com 满分网的图象与x轴从左到右的两个交点依次为A、B,与y轴交点为C;
(1)求A、B、C三点的坐标;
(2)求过B、C两点的一次函数的解析式;
(3)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△POA的面积S与x之间的函数关系式,并求出自变量x的取值范围;
(4)是否存在这样的点P,使得PO=AO?若存在,求出点P的坐标;若不存在说明理由.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.