满分5 > 初中数学试题 >

如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0)...

如图1,在平面直角坐标系中,抛物线y=ax2+c与x轴正半轴交于点F(16,0),与y轴正半轴交于点E(0,16),边长为16的正方形ABCD的顶点D与原点O重合,顶点A与点E重合,顶点C与点F重合.
(1)求抛物线的函数表达式;
(2)如图2,若正方形ABCD在平面内运动,并且边BC所在的直线始终与x轴垂直,抛物线始终与边AB交于点P且同时与边CD交于点Q(运动时,点P不与A,B两点重合,点Q不与C,D两点重合).设点A的坐标为(m,n)(m>0).
①当PO=PF时,分别求出点P和点Q的坐标;
②在①的基础上,当正方形ABCD左右平移时,请直接写出m的取值范围;
③当n=7时,是否存在m的值使点P为AB边的中点?若存在,请求出m的值;若不存在,请说明理由.

manfen5.com 满分网
(1)将F点的坐标代入抛物线的解析式中,即可求出待定系数的值,由此确定该抛物线的解析式; (2)①若PO=PF,那么P点位于OF的垂直平分线上,此时P点的横坐标是F点横坐标的一半;将其代入抛物线的解析式中,即可求出P点的坐标;易知正方形的边长为16,根据P点的坐标即可确定Q点的纵坐标,进而可由抛物线的解析式确定Q点的坐标; ②在①中,求得P(8,12),Q(8,-4);当P、A重合时,m=8;当Q、C重合时,m=8-16;由于P、A,Q、C都不重合,所以m的取值范围应该是8-16<m<8; ③当n=7时,P点的纵坐标为7,Q点的纵坐标为-9,根据抛物线的解析式可确定P、Q的坐标;假设P是AB的中点,根据这个条件可确定A、B、C、D四点的坐标,然后判断P、Q是否与这四点重合,若重合则与已知矛盾,那么就不存在符合条件的m值,若不重合,所得A点的横坐标即为所求的m值. 【解析】 (1)由抛物线y=ax2+c经过点E(0,16),F(16,0)得: 解得,(3分) ∴.(4分) (2)①过点P做PG⊥x轴于点G, ∵PO=PF, ∴OG=FG, ∵F(16,0), ∴OF=16, ∴OG=×OF=×16=8, 即P点的横坐标为8, ∵P点在抛物线上, ∵m>0, ∴y=, 即P点的纵坐标为12, ∴P(8,12),(6分) ∵P点的纵坐标为12,正方形ABCD边长是16, ∴Q点的纵坐标为-4, ∵Q点在抛物线上, ∴, ∴, ∵m>0, ∴, ∴, ∴.(8分) ②8-16<m<8.(10分) ③不存在.(11分) 理由:当n=7时,则P点的纵坐标为7, ∵P点在抛物线上, ∴, ∴x1=12,x2=-12, ∵m>0 ∴x2=-12(舍去) ∴x=12 ∴P点坐标为(12,7) ∵P为AB中点, ∴, ∴点A的坐标是(4,7), ∴m=4,(12分) 又∵正方形ABCD边长是16, ∴点B的坐标是(20,7),点C的坐标是(20,-9), ∴点Q的纵坐标为-9, ∵Q点在抛物线上, ∴, ∴x1=20,x2=-20, ∵m>0, ∴x2=-20(舍去) ∴x=20, ∴Q点坐标(20,-9), ∴点Q与点C重合,这与已知点Q不与点C重合矛盾, ∴当n=7时,不存在这样的m值使P为AB的边的中点. (14分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系中,函数y=manfen5.com 满分网(m>0)的图象经过点A(1,4)、B(a,b),其中a>1.过点A作x轴的垂线,垂足为C;过点B作y轴的垂线,垂足为D,AC与BD相交于点M,连接AB、AD、BC、CD.
(1)求m的值;
(2)求证:CD∥AB;
(3)当AD=BC时,求直线AB的函数解析式.

manfen5.com 满分网 查看答案
如图,在⊙O中,直径AB垂直于弦CD,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G.
(1)直线FC与⊙O有何位置关系?并说明理由;
(2)若OB=BG=2,求CD的长.

manfen5.com 满分网 查看答案
袋子中装有2个红球,1个黄球,它们除颜色外其余都相同.小明和小英做摸球游戏,约定一次游戏规则是:小英先从袋中任意摸出1个球记下颜色后放回,小明再从袋中摸出1个球记下颜色后放回,如果两人摸到的球的颜色相同,小英赢,否则小明赢.
(1)请用树状图或列表格法表示一次游戏中所有可能出现的结果;
(2)这个游戏规则对双方公平吗?请说明理由.
查看答案
某货运码头,有稻谷和棉花共2680t,其中稻谷比棉花多380t.
(1)求稻谷和棉花各是多少?
(2)现安排甲、乙两种不同规格的集装箱共50个,将这批稻谷和棉花运往外地.已知稻谷35t和棉花15t可装满一个甲型集装箱;稻谷25t和棉花35t可装满一个乙型集装箱.按此要求安排甲、乙两种集装箱的个数,有哪几种方案?
查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
manfen5.com 满分网
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.