如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.
考点分析:
相关试题推荐
一个不透明的口袋里装有红、黄、绿三种颜色的小球(除颜色不同外其余都相同),其中红球2个(分别标有1号、2号),黄球1个,从中任意摸出1球是绿球的概率是
.
(1)试求口袋中绿球的个数;
(2)小明和小刚玩摸球游戏:第一次从口袋中任意摸出1球(不放回),第二次再摸出1球.两人约定游戏胜负规则如下:
你认为这种游戏胜负规则公平吗?请用列表或画树状图的方法说明理由;若你认为不公平,请修改游戏胜负规则,使游戏变得公平.
查看答案
如图,在8×8的正方形网格中,△ABC的顶点和线段EF的端点都在边长为1的小正方形的顶点上.
(1)填空:∠ABC=______,BC=______
查看答案
已知函数y=y
1+y
2,y
1与x成正比例,y
2与x成反比例,且当x=1时,y=4;当x=2时,y=5.
(1)求y与x的函数关系式;
(2)当x=-2时,求函数y的值.
查看答案
如图,甲、乙两人分别从正方形ABCD的顶点C,B两点同时出发,甲由C向D运动,乙由B向C运动.若一人达到目的地,另一人随之停止,甲的速度为1千米/分,乙的速度为2千米/分.正方形的周长为40千米,问几分钟后,两人相距2
千米?
查看答案
(1)解不等式
,并将解集在数轴上表示出来.
(2)解方程:
.
查看答案