满分5 > 初中数学试题 >

如图,在平面直角坐标系中,点A(,0),B(3,2),C(0,2).动点D以每秒...

如图,在平面直角坐标系中,点A(manfen5.com 满分网,0),B(3manfen5.com 满分网,2),C(0,2).动点D以每秒1个单位的速度从点0出发沿OC向终点C运动,同时动点E以每秒2个单位的速度从点A出发沿AB向终点B运动.过点E作EF上AB,交BC于点F,连接DA,DF.设运动时间为t秒.
(1)求∠ABC的度数;
(2)当t为何值时,AB∥DF;
(3)设四边形AEFD的面积为S.
①求S关于t的函数关系式;②若一抛物线y=x2+mx经过动点E,当S<2manfen5.com 满分网时,求m的取值范围(写出答案即可).

manfen5.com 满分网
(1)过点B作BM⊥x轴于点M,在Rt△ABM中求tan∠BAM,得出∠BAM的度数,利用BC∥OA求解; (2)当AB∥DF时,∠CFD=∠CBA=30°,在Rt△CDF,Rt△BEF中,解直角三角形求CF,BF,根据CF+BF=BC,列方程求解; (3)①由D、E两点坐标可知DE∥x轴,根据S=S△DEF+S△DEA,利用三角形面积公式列函数式; ②将①中的关系式代入S<中求t的取值范围,将E(+t,t)代入抛物线y=x2+mx中,求m、t的关系式,代入t的取值范围求m的取值范围. 【解析】 (1)过点B作BM⊥x轴于点M, ∵C(0,2),B(3,2), ∴BC∥OA, ∵BM=2,AM=2, ∴tan∠BAM=, ∴∠ABC=∠BAM=30°. (2)∵AB∥DF, ∴∠CFD=∠CBA=30°, 在Rt△DCF中,CD=2-t,∠CFD=30°, ∴CF=(2-t), ∵AB=4, ∴BE=4-2t,∠FBE=30°, ∴BF=, ∴(2-t)+=3, ∴t=. (3)①过点EG⊥x轴于点G, ∵∠EAG=30°,AE=2t, ∴EG=AE=t,OG=+t ∴E(+t,t) ∴DE∥x轴 S=S△DEF+S△DEA=DE×CD+DE×OD=DE×OC =×(t+)×2=t+. ②当S<2时,t+<2 ∴t<1, ∵t>0, ∵0<t<1, ∴<m<.
复制答案
考点分析:
相关试题推荐
已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,EB=manfen5.com 满分网
(1)求证:△APD≌△AEB;
(2)探究EB与ED的位置关系,并说明理由;
(3)求正方形ABCD的面积.

manfen5.com 满分网 查看答案
如图,已知Rt△ABC和Rt△EBC,∠B=90°.以边AC上的点O为圆心、OA为半径的⊙O与EC相切,D为切点,AD∥BC.
(1)用尺规确定并标出圆心O;(不写作法和证明,保留作图痕迹)
(2)求证:∠E=∠ACB;
(3)若AD=1,manfen5.com 满分网,求BC的长.

manfen5.com 满分网 查看答案
某市在道路改造过程中,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.(完成工程的工期为整数)
(1)甲、乙工程队每天各能铺设多少米?
(2)如果要求完成该项工程的工期不超过10天,那么为两工程队分配工程量的方案有几种?请你帮助设计出来(工程队分配工程量为正整百数).
查看答案
如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.
(1)求证:BD=CD;
(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.

manfen5.com 满分网 查看答案
一个不透明的口袋里装有红、黄、绿三种颜色的小球(除颜色不同外其余都相同),其中红球2个(分别标有1号、2号),黄球1个,从中任意摸出1球是绿球的概率是manfen5.com 满分网
(1)试求口袋中绿球的个数;
(2)小明和小刚玩摸球游戏:第一次从口袋中任意摸出1球(不放回),第二次再摸出1球.两人约定游戏胜负规则如下:
manfen5.com 满分网
你认为这种游戏胜负规则公平吗?请用列表或画树状图的方法说明理由;若你认为不公平,请修改游戏胜负规则,使游戏变得公平.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.