如图,在平面直角坐标系内,O为坐标原点,点A在x轴负半轴上,点B在x轴正半轴上,且OB>OA.设点C(0,-4),OA
2+OB
2=17,线段OA、OB的长是关于x的一元二次方程x
2-mx+2(m-3)=0的两个根.
(1)求过A、B、C三点的抛物线的解析式;
(2)设上述抛物线的顶点为P,求直线PB的解析式.
考点分析:
相关试题推荐
如图,△ABC中D为AC上一点,CD=2DA,∠BAC=45°,∠BDC=60°,CE⊥BD,E为垂足,连接AE.
求证:(1)ED=DA;
(2)∠EBA=∠EAB
(3)BE
2=AD•AC.
查看答案
在一次环保知识测试中,三年一班的两名同学根据班级成绩(分数为整数)分别绘制了不同的频率分布直方图,如图1、2,已知图1从左到右每个小组的频率分别为0.04、0.08、0.24、0.32、0.20、0.12,其中68.5~76.5小组的频数为12;图2从左到右每个小组的频数之比为1:2:4:7:6:3:2,请结合条件和频率分布直方图回答下列问题:
(1)三年一班参加测试的人数是多少?
(2)若这次测试的成绩80分以上(含80分)为优秀,则优秀率是多少?
(3)若这次测试的成绩60分以上(含60分0为及格,则及格率是多少?
查看答案
如图,在直角梯形ABCD中,AD∥BC,DC⊥BC,E为BC边上的点,将直角梯形ABCD沿对角线BD折叠,使△ABD△与EBD重合.若∠A=120°,AB=4cm,求EC的长.
查看答案
如果两圆的半径分别为3、5,圆心距为2,那么两圆的位置关系为( )
A.外切
B.相交
C.内切
D.内含
查看答案