满分5 > 初中数学试题 >

如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点...

如图1,在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上一点,连接BO交AD于F,OE⊥OB交BC边于点E.
(1)求证:△ABF∽△COE;
(2)当O为AC的中点,manfen5.com 满分网时,如图2,求manfen5.com 满分网的值;
(3)当O为AC边中点,manfen5.com 满分网时,请直接写出manfen5.com 满分网的值.

manfen5.com 满分网
(1)要求证:△ABF∽△COE,只要证明∠BAF=∠C,∠ABF=∠COE即可. (2)作OH⊥AC,交AD的延长线于H,易证△ABF≌△COE,进而证明△ABF∽△HOF,根据相似三角形的对应边的比相等,即可得出所求的值.同理可得(3)=n. (1)证明:∵AD⊥BC, ∴∠DAC+∠C=90°. ∵∠BAC=90°, ∴∠BAF=∠C. ∵OE⊥OB, ∴∠BOA+∠COE=90°, ∵∠BOA+∠ABF=90°, ∴∠ABF=∠COE. ∴△ABF∽△COE. (2)【解析】 过O作AC垂线交BC于H,则OH∥AB, 由(1)得∠ABF=∠COE,∠BAF=∠C. ∴∠AFB=∠OEC, ∴∠AFO=∠HEO, 而∠BAF=∠C, ∴∠FAO=∠EHO, ∴△OEH∽△OFA, ∴OF:OE=OA:OH 又∵O为AC的中点,OH∥AB. ∴OH为△ABC的中位线, ∴OH=AB,OA=OC=AC, 而, ∴OA:OH=2:1, ∴OF:OE=2:1,即=2; (3)【解析】 =n.
复制答案
考点分析:
相关试题推荐
某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?
(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?
查看答案
某中学为了解某年级1200名学生每学期参加社会实践活动的时间,随机对该年级50名学生进行了调查,结果如下表:
时间(天)45678910111213
人  数12457118642
(1)在这个统计中,众数是______,中位数是______
(2)补全下面的频率分布表和频率分布直方图:
分组频数频率
3.5~5.530.06
5.5~7.590.18
7.5~9.50.36
9.5~11.514
11.5~13.560.12
合计501.00
(3)请你估算这所学校该年级的学生中,每学期参加社会实践活动时间不少于9天的大约有多少人?

manfen5.com 满分网 查看答案
如图,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.
(1)求证:AB是⊙O的切线;
(2)若△ABO腰上的高等于底边的一半,且manfen5.com 满分网,求manfen5.com 满分网的长.

manfen5.com 满分网 查看答案
安装在屋顶的太阳能热水器的横截面示意图如图所示.已知集热管AE与支架BF所在直线相交于水箱横截面⊙O的圆心O,⊙O的半径为0.2m,AO与屋面AB的夹角为32°,与铅垂线OD的夹角为40°,BF⊥AB于B,OD⊥AD于D,AB=2m,求屋面AB的坡度和支架BF的长.
(参考数据:tan18°≈manfen5.com 满分网,tan32°≈manfen5.com 满分网,tan40°≈manfen5.com 满分网).

manfen5.com 满分网 查看答案
已知:如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.