已知二次函数y=4x
2+bx+
(b
2+b),b取任何实数时,它的图象都是一条抛物线.
(1)现在有如下两种说法:
①b取任何不同的数值时,所对应的抛物线都有着完全相同的形状;
②b取任何不同的数值时,所对应的抛物线都有着不相同的形状.
你认为哪一种说法正确,为什么?
(2)若b=-1,b=2时对应的抛物线的顶点分别为A,B,请你求出直线AB的解析式;
(3)在(2)中所确定的直线AB上有一点C,且点C的纵坐标为-1,问:在x轴上是否存在点D使△COD为等腰三角形?若存在,直接写出点D的坐标;若不存在,简单说明理由.
考点分析:
相关试题推荐
如图:正方形ABCD的边长AB=10cm.E在CB的延长线上,EB=10cm,点P在CD上运动,EP交AB于点F,设DP=x,△EFB与四边形AFPD的面积和为ycm
2.
(1)求y与x之间的函数关系式;
(2)写出自变量x的取值范围.
查看答案
为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案
如图,有一长方形的地区,长为x千米,宽为12千米,现规划将它分成三部分:甲、乙、丙.甲和乙为正方形.若已知丙地的面积为32平方千米,试求x的值.
查看答案
已知:如图,⊙O与⊙O
1交于A和B两点,O在⊙O
1上,⊙O的弦BC交⊙O
1于D.
求证:AD=DC.
查看答案
如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.
(1)求证:四边形AEFG是平行四边形;
(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.
查看答案