满分5 > 初中数学试题 >

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在...

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和Dmanfen5.com 满分网
(1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同
时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取manfen5.com 满分网时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.

manfen5.com 满分网
(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可; (2)①由勾股定理即可求出,②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标. (3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标. 【解析】 (1)设抛物线的解析式是y=ax2+bx+c, ∵正方形的边长2, ∴B的坐标(2,-2)A点的坐标是(0,-2), 把A(0,-2),B(2,-2),D(4,-)代入得:, 解得a=,b=-,c=-2, ∴抛物线的解析式为:, 答:抛物线的解析式为:. (2)①由图象知:PB=2-2t,BQ=t, ∴S=PQ2=PB2+BQ2, =(2-2t)2+t2, 即S=5t2-8t+4(0≤t≤1). 答:S与运动时间t之间的函数关系式是S=5t2-8t+4,t的取值范围是0≤t≤1. ②【解析】 假设存在点R,可构成以P、B、R、Q为顶点的平行四边形. ∵S=5t2-8t+4(0≤t≤1), ∴当S=时,5t2-8t+4=,得20t2-32t+11=0, 解得t=,t=(不合题意,舍去), 此时点P的坐标为(1,-2),Q点的坐标为(2,-), 若R点存在,分情况讨论: (i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB, 则R的横坐标为3,R的纵坐标为-, 即R(3,-), 代入,左右两边相等, ∴这时存在R(3,-)满足题意; (ii)假设R在QB的左边时,这时PR=QB,PR∥QB, 则R(1,-)代入,, 左右不相等,∴R不在抛物线上.(1分) 综上所述,存点一点R(3,-)满足题意. 则存在,R点的坐标是(3,-); (3)如图,M′B=M′A, ∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形, ∴|MB|-|MD|<|DB|, 即交点时差为|DB|为最大, 设直线BD的解析式是y=kx+b,把B、D的坐标代入得:, 解得:k=,b=-, ∴y=x-, 抛物线的对称轴是x=1, 把x=1代入得:y=- ∴M的坐标为(1,-); 答:M的坐标为(1,-).
复制答案
考点分析:
相关试题推荐
(1)如图,给出四个条件:①AE平分∠BAD,②BE平分∠ABC,③AE⊥EB,④AB=AD+BC.请你以其中三个作为命题的条件,写出一个能推出AD∥BC的正确命题,并加以证明;
(2)请你判断命题“如图,AE平分∠BAD,BE平分∠ABC,E是CD的中点,则AD∥BC.”是否正确,并说明理由.

manfen5.com 满分网 查看答案
观察与思考:阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作 AD⊥BC于D(如图1),则sinB=manfen5.com 满分网,sinC=manfen5.com 满分网,即AD=csinB,AD=bsinC,于是csinB=bsinC,即manfen5.com 满分网.同理有:manfen5.com 满分网manfen5.com 满分网,所以manfen5.com 满分网
即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.
(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=______;AC=______
查看答案
由于电力紧张,某地决定对工厂实行鼓励错峰用电.规定:在每天的7:00至24:00为用电高峰期,电价为a元/度;每天0:00至7:00为用电平稳期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:
月份用电量(万度)电费(万元)
4126.4
5168.8
(1)若4月份在平稳期的用电量占当月用电量的manfen5.com 满分网,5月份在平稳期的用电量占当月用电量的manfen5.com 满分网,求a、b的值;
(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在平稳期的用电量占当月用电量的比例应在什么范围?
查看答案
有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=-x-2上的概率.
查看答案
在如图的方格纸中,每个小正方形的边长都为1.
(1)画出将△A1B1C1,沿直线DE方向向上平移5格得到的△A2B2C2
(2)要使△A2B2C2与△CC1C2重合,则△A2B2C2绕点C2顺时针方向旋转,至少要旋转多少度?(直接写出答案)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.