根据D是边BC的中点,过D作DE∥AB,得到E为AC的中点,BE⊥AC,设△ABC的高是h,根据三角形的面积公式求出s1=•BC•AD=s=,根据DE∥AB,D1E1∥AB,得到==2=,求出s2=,同理s3=s=,进而得出sn=,即得到答案.
【解析】
∵D是边BC的中点,过D作DE∥AB,
∴E为AC的中点,BE⊥AC,
设△ABC的高是h,
过E作EM⊥BC于M,
∵BD=DC,DE∥AB,
∴AE=EC,
∵AD⊥BC,EM⊥BC,
∴AD∥EM,
∴DM=MC,
∴EM=AD=h,
∴s1=•BC•AD=s=,
∵DE∥AB,D1E1∥AB,
∴==2=,
∴s2=•AE•h-•AE•h=s=,
同理s3=s=,
…
sn=,
故答案为:.