(1)阅读理【解析】
配方法是中学数学的重要方法,用配方法可求最大(小)值.
对于任意正实数a、b,可作如下变形a+b=
=
-
+
=
+
,
又∵
≥0,∴
+
≥0+
,即a+b≥
.
根据上述内容,回答下列问题:在a+b≥
(a、b均为正实数)中,若ab为定值p,则a+b≥
,当且仅当a、b满足______时,a+b有最小值
.
(2)思考验证:如图1,△ABC中,∠ACB=90°,CD⊥AB,垂足为D,CO为AB边上中线,AD=2a,DB=2b,试根据图形验证a+b≥
成立,并指出等号成立时的条件.
(3)探索应用:如图2,已知A为反比例函数
的图象上一点,A点的横坐标为1,将一块三角板的直角顶点放在A处旋转,保持两直角边始终与x轴交于两点D、E,F(0,-3)为y轴上一点,连接DF、EF,求四边形ADFE面积的最小值.
考点分析:
相关试题推荐
如图,在平面直角坐标系中,点A(-6,0)、点C(0,4),四边形OABC是矩形,以点O为圆心的⊙O过点D(
,0),点P从点O出发,沿O-C-B-A以1厘米/秒的速度运动,直线l为AP的垂直平分线,垂足为E,设运动时间为t秒.
(1)当t为何值时,AP与⊙O相切?
(2)请你探究当直线l与⊙O相切时t的值.
查看答案
如图,在平面直角坐标系中,直线y=-x+3与x轴、y轴分别交于点B、C;抛物线y=-x
2+bx+c经过B、C两点,并与x轴交于另一点A.
(1)求该抛物线所对应的函数关系式;
(2)设P(x,y)是(1)所得抛物线上的一个动点,过点P作直线l⊥x轴于点M,交直线BC于点N.
①若点P在第一象限内.试问:线段PN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;
②求以BC为底边的等腰△BPC的面积.
查看答案
正方形ABCD中,点O是对角线AC的中点,P是对角线AC上一动点,过点P作PF⊥CD于点F.如图1,当点P与点O重合时,显然有DF=CF.
(1)如图2,若点P在线段AO上(不与点A、O重合),PE⊥PB且PE交CD于点E.
①求证:DF=EF;
②写出线段PC、PA、CE之间的一个等量关系,并证明你的结论;
(2)若点P在线段OC上(不与点O、C重合),PE⊥PB且PE交直线CD于点E.请完成图3并判断(1)中的结论①、②是否分别成立?若不成立,写出相应的结论.(所写结论均不必证明)
查看答案
某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.
(1)求a的值;
(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;
(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?
查看答案
如图,小岛在港口P的北偏西60°方向,距港口56海里的A处,货船从港口P出发,沿北偏东45°方向匀速驶离港口P,4小时后货船在小岛的正东方向.求货船的航行速度.(精确到0.1海里/时,参考数据:
≈1.41,
≈1.73)
查看答案