满分5 > 初中数学试题 >

如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A...

如图,直线y=-x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
manfen5.com 满分网
(1)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化并说明理由;
(2)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?
(3)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a<4),正方形OCMD与△AOB重叠部分的面积为S.试求S与a的函数关系式并画出该函数的图象.
(1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,x>0,-x+4>0)用坐标表示线段的长度则:MC=|-x+4|=-x+4,MD=|x|=x,根据四边形的周长计算方法计算即可发现,当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8. (2)先用x表示四边形的面积S四边形OCMD=-(x-2)2+4,再利用四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且x=2,可知即当点M运动到线段AB的中点时,四边形OCMD的面积最大且最大面积为4. (3)结合( 2 ),当0<a≤2时,S=4-a2=-a2+4;当2≤a<4时,S=(4-a)2=(a-4)2,作图即可.注意该图是分段函数. 【解析】 (1)设点M的横坐标为x,则点M的纵坐标为-x+4(0<x<4,-x+4>0), 则:MC=|-x+4|=-x+4,MD=|x|=x, ∴C四边形OCMD=2(MC+MD)=2(-x+4+x)=8, ∴当点M在AB上运动时,四边形OCMD的周长不发生变化,总是等于8. (2)根据题意得:S四边形OCMD=MC•MD=(-x+4)•x=-x2+4x=-(x-2)2+4, ∴四边形OCMD的面积是关于点M的横坐标x(0<x<4)的二次函数,并且当x=2, 即当点M运动到线段AB的中点时,四边形OCMD的面积最大且最大面积为4. (3)如图( 2 ),当0<a≤2时,S=4-a2=-a2+4, 如图(3),当2≤a<4时,S=(4-a)2=(a-4)2, ∴S与a的函数的图象如下图所示.
复制答案
考点分析:
相关试题推荐
矩形OABC在平面直角坐标系中位置如图所示,A、C两点的坐标分别为A(6,0),C(0,-3),直线y=-manfen5.com 满分网x与BC边相交于D点.
(1)求点D的坐标;
(2)若抛物线y=ax2-manfen5.com 满分网x经过点A,试确定此抛物线的表达式;
(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求符合条件的点P的坐标.

manfen5.com 满分网 查看答案
由于受甲型H1N1流感(起初叫猪流感)的影响,4月初某地猪肉价格大幅度下调,下调后每斤猪肉价格是原价格的manfen5.com 满分网,原来用60元买到的猪肉下调后可多买2斤.4月中旬,经专家研究证实,猪流感不是由猪传染,很快更名为甲型H1N1流感.因此,猪肉价格4月底开始回升,经过两个月后,猪肉价格上调为每斤14.4元.
(1)求4月初猪肉价格下调后每斤多少元?
(2)求5,6月份猪肉价格的月平均增长率.
查看答案
如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若∠DBC=30°,DE=1cm,求BD的长.

manfen5.com 满分网 查看答案
为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求表示户外活动时间1小时的扇形圆心角的度数;
(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?manfen5.com 满分网
查看答案
如图,点B、D、C、F在一条直线上,且BC=FD,AB=EF.
(1)请你只添加一个条件(不再加辅助线),使△ABC≌△EFD,你添加的条件是______
(2)添加了条件后,证明△ABC≌△EFD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.