满分5 > 初中数学试题 >

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点. (1)求出抛物...

如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得△DCA的面积最大,求出点D的坐标.

manfen5.com 满分网
(1)本题需先根据已知条件,过C点,设出该抛物线的解析式为y=ax2+bx-2,再根据过A,B两点,即可得出结果. (2)本题首先判断出存在,首先设出横坐标和纵坐标,从而得出PA的解析式,再分三种情况进行讨论,当时和时,当P,C重合时,△APM≌△ACO,分别求出点P的坐标即可. (3)本题需先根据题意设出D点的横坐标和D点的纵坐标,再过D作y轴的平行线交AC于E,再由题意可求得直线AC的解析式为,即可求出E点的坐标,从而得出结果即可. 【解析】 (1)∵该抛物线过点C(0,-2), ∴可设该抛物线的解析式为y=ax2+bx-2. 将A(4,0),B(1,0)代入, 得, 解得, ∴此抛物线的解析式为; (2)存在.如图,设P点的横坐标为m, 则P点的纵坐标为, 当1<m<4时,AM=4-m,. 又∵∠COA=∠PMA=90°, ∴①当, ∵C在抛物线上, ∴OC=2, ∵OA=4, ∴, ∴△APM∽△ACO, 即. 解得m1=2,m2=4(舍去), ∴P(2,1). ②当时,△APM∽△CAO,即. 解得m1=4,m2=5(均不合题意,舍去) ∴当1<m<4时,P(2,1), 当m>4时,AM=m-4,PM=m2-m+2, ①==或②==2, 把P(m,-m2+m-2)代入得:2(m2-m+2)=m-4,2(m-4)=m2-m+2, 解得:第一个方程的解是m=-2-2<4(舍去)m=-2+2<4(舍去), 第二个方程的解是m=5,m=4(舍去) 求出m=5,-m2+m-2=-2, 则P(5,-2), 当m<1时,AM=4-m,PM=m2-m+2. ①==或==2, 则:2(m2-m+2)=4-m,2(4-m)=m2-m+2, 解得:第一个方程的解是m=0(舍去),m=4(舍去),第二个方程的解是m=4(舍去),m=-3, m=-3时,-m2+m-2=-14, 则P(-3,-14), 综上所述,符合条件的点P为(2,1)或(5,-2)或(-3,-14), (3)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为||. 过D作y轴的平行线交AC于E. 由题意可求得直线AC的解析式为. ∴E点的坐标为. ∴, ∴S△DAC=S△DCE+S△DEA=DE•h+DE•(4-h)=DE•4, ∴, ∴当t=2时,△DAC面积最大, ∴D(2,1).
复制答案
考点分析:
相关试题推荐
已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线y=manfen5.com 满分网x+b(b<k)与此图象有两个公共点时,b的取值范围.

manfen5.com 满分网 查看答案
随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2007年底拥有家庭轿车64辆,2009年底家庭轿车的拥有量达到100辆.
(1)该小区2007年底到2010年底家庭轿车拥有量的年平均增长率都相同,求该小区到2010年底家庭轿车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资30万元再建造若干停车位,据测算,建造费用分别为室内车位10000元/个,露天车位2000元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍.求该小区最多可建两种车位各多少个?试写出所有可能的方案.
查看答案
如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE.
(1)求证:DA⊥AE;
(2)试判断AB与DE是否相等?并证明你的结论.

manfen5.com 满分网 查看答案
manfen5.com 满分网已知图中的曲线是反比例函数y=manfen5.com 满分网(m为常数,m≠5)图象的一支.
(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;
(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求点A的坐标及反比例函数的解析式.
查看答案
某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.