满分5 > 初中数学试题 >

已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD...

已知:如图①,②,在矩形ABCD中,AB=4,BC=8,P,Q分别是边BC,CD上的点.
(1)如图①,若AP⊥PQ,BP=2,求CQ的长;
(2)如图②,若manfen5.com 满分网,且E,F,G分别为AP,PQ,PC的中点,求四边形EPGF的面积.

manfen5.com 满分网
(1)、由同角的余角相等可得∠APB=∠PQC,故△ABP∽△PCQ,有,代入BP,AB,PC的值求得CQ的值; (2)、取BP的中点H,连接EH,由三角形的中位线的性质可得四边形EHGF是直角梯形,由,设CQ=a,有BP=2a,用含a的代数式表示出EH,FG,HP,HG,两用梯形和三角形的面积公式求得S四边形EPGF=S梯形EHGF-S△EHP的值. 【解析】 (1)∵四边形ABCD是矩形 ∴∠B=∠C=90°, ∴∠CPQ+∠PQC=90°, ∵AP⊥PQ, ∴∠CPQ+∠APB=90°, ∴∠APB=∠PQC, ∴△ABP∽△PCQ, ∴,即, ∴CQ=3; (2)解法一:取BP的中点H,连接EH,由, 设CQ=a,则BP=2a, ∵E,F,G,H分别为AP,PQ,PC,BP的中点, ∴EH∥AB,FG∥CD, 又∵AB∥CD,∠B=∠C=90°, ∴EH∥FG,EH⊥BC,FG⊥BC, ∴四边形EHGF是直角梯形, ∴EH=AB=2,FG=CQ=a,HP=BP=a,HG=HP+PG=BC=4, ∴S梯形EHGF=(EH+FG)•HG=(2+a)•4=4+a,S△EHP=HP•EH=a•2=a, ∴S四边形EPGF=S梯形EHGF-S△EHP=4+a-a=4; 解法二:连接AQ,由=2,设CQ=a,则BP=2a,DQ=4-a,PC=8-2a,S△APQ=S矩形ABCD-S△ABP-S△PCQ-S△ADQ =4×8-•2a•4-(8-2a)a-×8(4-a) =a2-4a+16 ∵E,F,G分别是AP,PQ,PC的中点 ∴EF∥AQ,EF=AQ.∴△PEF∽△PAQ ∴,S△PEF=S△APQ=(a2-4a+16) 同理:S△PFG=S△PCQ=a(8-2a) ∴S四边形EPGF=S△PEF+S△PFG =(a2-4a+16)+a(8-2a)=4.
复制答案
考点分析:
相关试题推荐
康乐公司在A、B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台.从A、B两地运往甲、乙两地的费用如下表:
甲地(元/台)乙地(元/台)
A地600500
B地400800
(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)的函数关系式;
(2)若康乐公司请你设计一种最佳调运方案,使总的费用最少,该公司完成以上调运方案至少需要多少费用?为什么?
查看答案
如图,在小岛上有一观察站A.据测,灯塔B在观察站A北偏西45°的方向,灯塔C在B正东方向,且相距10海里,灯塔C与观察站A相距manfen5.com 满分网海里,请你测算灯塔C处在观察站A的什么方向?

manfen5.com 满分网 查看答案
将5个完全相同的小球分装在甲、乙两个不透明的口袋中.甲袋中有3个球,分别标有数字2,3,4;乙袋中有2个球,分别标有数字2,4.从甲、乙两个口袋中各随机摸出一个球.
(1)用列表法或画树状图法,求摸出的两个球上数字之和为5的概率.
(2)摸出的两个球上数字之和为多少时的概率最大?
查看答案
某区七年级有3000名学生参加“安全伴我行知识竞赛”活动.为了了解本次知识竞赛的成绩分布情况,从中抽取了200名学生的得分(得分取正整数,满分为100分)进行统计.
manfen5.com 满分网
请你根据不完整的频率分布表,解答下列问题:
(1)补全频数分布直方图;
(2)若将得分转化为等级,规定得分低于59.5分评为“D”,59.5~69.5分评为“C”,69.5~89.5分评为“B”,89.5~100.5分评为“A”.这次全区七年级参加竞赛的学生约有多少学生参赛成绩被评为“D”如果随机抽查一名参赛学生的成绩等级,则这名学生的成绩被评为“A”、“B”、“C”、“D”哪一个等级的可能性大?请说明理由.
查看答案
已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.