满分5 > 初中数学试题 >

如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为O...

如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.
(1)求这条抛物线对应的函数关系式;
(2)连接BD,试判断BD与AD的位置关系,并说明理由;
(3)连接BC交直线AD于点M,在直线AD上,是否存在这样的点N(不与点M重合),使得以A、B、N为顶点的三角形与△ABM相似?若存在,请求出点N的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据△ABE与△ABC的面积之比为3:2,可得出OC与E点纵坐标的比为3:2,因此C点的坐标为(0,4).D点坐标为(0,2).然后可求出直线AD的解析式,进而可求出A点坐标.根据A,C,E三点坐标即可求出抛物线的解析式; (2)应该是垂直关系.可根据(1)中得出的抛物线的解析式求出B点的坐标,然后通过证△ABD和△ADO相似即可得出∠ADB=90°,也可利用勾股定理来求证,答案不唯一; (3)由于以A、B、N为顶点的三角形与△ABM相似,且M、N不重合,而这两个三角形又有一个公共角,因此只有一种情况,即△ANB∽△ABM,可得出AN:AB=AB:AM,由此可求出AN的长,即可求出N点的坐标. (也可通过证△AEB∽△ABM,得出E,N重合,由此可求出N点的坐标). 【解析】 (1)根据△ABE与△ABC的面积之比为3:2及E(2,6),可得C(0,4). ∴D(0,2). 由D(0,2)、E(2,6)可得直线AD所对应的函数关系式为y=2x+2. 当y=0时,2x+2=0, 解得x=-1. ∴A(-1,0). 由A(-1,0)、C(0,4)、E(2,6)求得抛物线对应的函数关系式为y=-x2+3x+4. (2)BD⊥AD. 求得B(4,0),通过相似或勾股定理逆定理证得∠BDA=90°, 即BD⊥AD. (3)法1:求得M(,),AM=. 由△ANB∽△ABM,得=,即AB2=AM•AN, ∴52=•AN, 解得AN=3. 从而求得N(2,6). 法2:由OB=OC=4及∠BOC=90°得∠ABC=45°. 由BD⊥AD及BD=DE=2得∠AEB=45°. ∴△AEB∽△ABM,即点E符合条件, ∴N(2,6).
复制答案
考点分析:
相关试题推荐
如图,直角梯形ABCD中,AB∥CD,∠ABC=90°,AB=1,CD=3,BC=6,有一个点E从C出发以每秒1个单位的速度向B移动,到达B后停止;t(秒)为E点移动的时间.
(1)用含t的代数式表示tan∠EAB;
(2)当t在0秒到6秒之间变化时,△ABE和△DCE有可能相似吗?如果不能相似请说明理由,如果能相似请求出相似时的t.

manfen5.com 满分网 查看答案
如图所示,已知:如图,AB是⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,
(1)求证:DE是⊙O的切线;
(2)若∠BAE=60°,⊙O的半径为5,求DE的长.

manfen5.com 满分网 查看答案
如图,已知四边形ABCD,AB∥DC,点F在AB的延长线上,连接DF交BC于E且S△DCE=S△FBE
(1)求证:△DCE≌△FBE;
(2)若BE是△ADF的中位线,且BE+FB=6厘米,求DC+AD+AB的长.

manfen5.com 满分网 查看答案
某印刷厂计划购买5台印刷机,现有胶印机、一体机两种不同设备,其中每台的价格、日印刷量如下表:经预算,该厂购买设备的资金不高于22万元.
胶印机一体机
价格(万元/台)54
日印刷量(万张/天)53
(1)该厂有几种购买方案?
(2)若该厂每天的工作量为印刷17万张,为节约资金,应选择哪种购买方案?
查看答案
如图,两建筑物的水平距离BC为24米,从点A测得点D的俯角α=30°,测得点C的俯角β=60°,求AB和CD两座建筑物的高.(结果保留根号)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.