满分5 > 初中数学试题 >

已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于...

已知:如图,O为平面直角坐标系的原点,半径为1的⊙B经过点O,且与x,y轴分交于点A,C,点A的坐标为(-manfen5.com 满分网,0),AC的延长线与⊙B的切线OD交于点D.
(1)求OC的长和∠CAO的度数;
(2)求过D点的反比例函数的表达式.

manfen5.com 满分网
(1)在直角三角形ACO中,根据已知条件可以求得OA,AC的长,再根据勾股定理求得OC的长,根据锐角三角函数的概念求得∠CAO的度数; (2)要求反比例函数的表达式,需要求得点D的坐标.作DE⊥x轴于点E,根据对顶角相等和弦切角定理可以求得∠DOE=60°.所以只需再求得OD的长,根据三角形的外角的性质可以求得∠ADO=30°.则OD=OA.从而求得OE,DE的长,再根据点D的坐标求得反比例函数的表达式. 【解析】 (1)∵∠AOC=90°, ∴AC是⊙B的直径. ∴AC=2. 又∵点A的坐标为(-,0), ∴OA=. ∴. ∴sin∠CAO=. ∴∠CAO=30°; (2)如图,连接OB,过点D作DE⊥x轴于点E, ∵OD为⊙B的切线, ∴OB⊥OD. ∴∠BOD=90°. ∵AB=OB, ∴∠AOB=∠OAB=30°. ∴∠AOD=∠AOB+∠BOD=30°+90°=120°. 在△AOD中,∠ODA=180°-120°-30°=30°=∠OAD. ∴OD=OA=. 在Rt△DOE中,∠DOE=180°-120°=60°, ∴OE=OD•cos60°=OD=,ED=OD•sin60°=. ∴点D的坐标为. 设过D点的反比例函数的表达式为, ∴. ∴.
复制答案
考点分析:
相关试题推荐
甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成如图1、图2的统计图.
(1)在图2中画出折线表示乙队在集训期内这五场比赛成绩的变化情况;
(2)已知甲队五场比赛成绩的平均分x=90分,请你计算乙队五场比赛成绩的平均分x
(3)就这五场比赛,分别计算两队成绩的极差;
(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,根据上述统计,从平均分、折线的走势、获胜场数和极差四个方面分别进行简要分析,你认为选派哪支球队参赛更能取得好成绩?
manfen5.com 满分网
查看答案
已知抛物线y=x2+kx-manfen5.com 满分网k2(k为常数,且k>0).
(1)证明:此抛物线与x轴总有两个交点;
(2)设抛物线与x轴交于M、N两点,若这两点到原点的距离分别为OM、ON,且manfen5.com 满分网,求k的值.
查看答案
桌子上放有质地均匀,反面相同的4张卡片.正面分别标有数字1,2,3,4,将这些卡片反面朝上洗匀后放在桌面上,先从中任意抽出1张卡片,用卡片上所标的数字作为十位上的数字,将取出的卡片反面朝上放回洗匀;再从中任意抽取1张卡片,用卡片上所标的数字作为个位数字.试用列表或画树状图的方法分析,组成的两位数恰好能被3整除的概率是多少?
查看答案
已知:2a-3x+1=0,3b-2x-16=0,且a≤4<b,求x的取值范围.
查看答案
边长为1的正方形OA1B1C1的顶点A1在X轴的正半轴上,如图将正方形OA1B1C1绕顶点O顺时针旋转75°得正方形OABC,使点B恰好落在函数y=ax2(a<0)的图象上,则a的值为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.