满分5 > 初中数学试题 >

如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标...

如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)截取CE=OF=AD=m,且E,F,D分别在线段CO,OA,AB上,求四边形BEFD的面积S与m之间的函数关系式,并写出自变量m的取值范围;面积S是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;
(4)在(3)的情况下,四边形BEFD是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.
manfen5.com 满分网
(1)利用点关于中心对称性质,画出梯形OABC,分别求出各点的坐标. (2)因为已知A,B,C三点的坐标,所以可用待定系数法求出过此三点抛物线的解析式; (3)根据梯形及三角形的面积公式可求出四边形BEFD的面积S与m之间的函数关系式,因为在梯形AOBE中,OA最短为4,故m的取值范围为0<m<4.根据S与m之间的关系式可知当m=4时,S取最小值.又因为m=4时,原函数是无意义,故不存在m值,使S取得最小值. (4)此题应分四种情况讨论:①BE=FE,②FD=DB,③DB=BE,④FE=FD. 【解析】 (1)利用中心对称性质,画出梯形OABC.(1分) ∵A,B,C三点与M,N,H分别关于点O中心对称, ∴A(0,4),B(6,4),C(8,0)(3分) (写错一个点的坐标扣1分). (2)设过A,B,C三点的抛物线关系式为y=ax2+bx+c, ∵抛物线过点A(0,4), ∴c=4.则抛物线关系式为 y=ax2+bx+4.(4分) 将B(6,4),C(8,0)两点坐标代入关系式, 得(5分) 解得(6分) 所求抛物线关系式为:y=-x2+x+4.(7分) (3)∵OA=4,OC=8, ∴AF=4-m,OE=8-m.(8分) ∴S四边形EFDB=S梯形ABCO-S△ADF-S△EOF-S△BEC =OA(AB+OC)AF•ADOE•OFCE•OA =×4×(6+8)-m(4-m)-m(8-m)-×4m =m2-8m+28(0<m<4)(10分) ∵S=(m-4)2+12. ∴当m=4时,S的取最小值. 又∵0<m<4, ∴不存在m值,使S的取得最小值.(12分) (4)①BE=FE,显然不成立; ②FD=DB;根据勾股定理列方程得(4-m)2+m2=(6-m)2, 解得m=-2+2或m=-2-2(负值舍去). ③DB=BE;且BE⊥CO时,因为BE=4,则DB=4,m=AB-DB=6-4=2. ④FE=FD; 根据勾股定理列方程得(4-m)2+m2=62+m2, 整理得m2-8m-20=0,m=-2或m=10, 经检验均不合题意. ∴当m=-2+2时,DB=DF,当m=2时,BE=BD.(14分)
复制答案
考点分析:
相关试题推荐
如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).
(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.
manfen5.com 满分网
查看答案
如图,已知在⊙O中,AB=4manfen5.com 满分网,AC是⊙O的直径,AC⊥BD于F,∠A=30°.
(1)求图中阴影部分的面积;
(2)若用阴影扇形OBD围成一个圆锥侧面,请求出这个圆锥的底面圆的半径.
(3)试判断⊙O中其余部分能否给(2)中的圆锥做两个底面.

manfen5.com 满分网 查看答案
某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).
(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;
(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;
(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.
查看答案
四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.

manfen5.com 满分网 查看答案
为了丰富校园文化生活,某校计划在午间校园广播台播放“百家讲坛”的部分内容.为了了解学生的喜好,抽取若干名学生进行问卷调查(每人只选一项内容),整理调查结果,绘制统计图如下:
请根据统计图提供的信息回答以下问题:
(1)抽取的学生数为______名;
(2)该校有3000名学生,估计喜欢收听易中天《品三国》的学生有______名;
(3)估计该校女学生喜欢收听刘心武评《红楼梦》的约占全校学生的______%;
(4)你认为上述估计合理吗?理由是什么?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.