满分5 > 初中数学试题 >

如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,...

如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
(1)请你帮小萍求出x的值.
(2)参考小萍的思路,探究并解答新问题:
如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)
manfen5.com 满分网
(1)正方形AEGF的边长是x.则BG=EC-BE=x-2,CG=FG-CF=x-3,在直角△BGC中利用勾股定理即可得到关于x的方程,即可求解; (2)可以证明△AEF是等边三角形,△EFG是等腰三角形,作出底边上的高,利用三角函数即可求解EG,根据△BGC的周长是:BG+GC+BC=BG+GC+BD+CD=BG+GC+BE+CF=2EG即可求解. 【解析】 (1)分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形, D点的对称点为E、F,延长EB、FC相交于G点, 得到四边形AEGF是正方形, 根据对称的性质可得:BE=BD=2,CF=CD=3, 设AD=x,则正方形AEGF的边长是x, 则BG=EG-BE=x-2,CG=FG-CF=x-3, 在直角△BCG中,根据勾股定理可得:(x-2)2+(x-3)2=52, 解得:x=6或-1(舍去). 故边长是6; (2)作GM⊥EF于点M. 根据对称的性质可得:AE=AF=AD=4, ∠EAB=∠BAD,∠FAC=∠DAC, 又∵∠BAC=30°, ∴∠EAF=60°, ∴△AEF是等边三角形, ∴EF=AE=4,∠AEF=∠AFE=60°, ∴∠GEF=∠GFE=30°, 则EG=GF, ∴EM=EF=2, ∴EG==, ∴△BGC的周长是:BG+GC+BC=BG+GC+BD+CD=BG+GC+BE+CF=2EG=.
复制答案
考点分析:
相关试题推荐
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?(只需写出结论)
②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
manfen5.com 满分网
查看答案
点D为Rt△ABC的斜边AB上一点,点E在AC上,连接DE,CD,且∠ADE=∠BCD,CF⊥CD交DE的延长线于点F,连接AF
(1)如图1,若AC=BC,求证:AF⊥AB;
(2)如图2,若AC≠BC,当点D在AB上运动时,求证:AF⊥AB.
manfen5.com 满分网
查看答案
某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.
(1)请把三个图表中的空缺部分都补充完整;
(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).
编号教学方式最喜欢的频数频率
1教师讲,学生听200.10
2教师提出问题,学生探索思考0.5
3学生自行阅读教材,独立思考30
4分组讨论,解决问题0.25
manfen5.com 满分网
查看答案
如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动.
(1)当点D运动到与点A、O在同一条直线上时,试证明直线CD与⊙O相切;
(2)当直线CD与⊙O相切时,求CD所在直线对应的函数关系式;
(3)设点D的横坐标为x,正方形ABCD的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值.

manfen5.com 满分网 查看答案
一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置)、现把n张这样的餐桌按如图方式拼接起来.
(1)问四周可以坐多少人用餐?(用n的代数式表示)
(2)若有28人用餐,至少需要多少张这样的餐桌?
manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.