如图1,在△ABC中,已知∠BAC=45°,AD⊥BC于D,BD=2,DC=3,求AD的长.
小萍同学灵活运用轴对称知识,将图形进行翻折变换如图1.她分别以AB、AC为对称轴,画出△ABD、△ACD的轴对称图形,D点的对称点为E、F,延长EB、FC相交于G点,得到四边形AEGF是正方形.设AD=x,利用勾股定理,建立关于x的方程模型,求出x的值.
(1)请你帮小萍求出x的值.
(2)参考小萍的思路,探究并解答新问题:
如图2,在△ABC中,∠BAC=30°,AD⊥BC于D,AD=4.请你按照小萍的方法画图,得到四边形AEGF,求△BGC的周长.(画图所用字母与图1中的字母对应)
考点分析:
相关试题推荐
等腰△ABC,AB=AC=8,∠BAC=120°,P为BC的中点,小慧拿着含30°角的透明三角板,使30°角的顶点落在点P,三角板绕P点旋转.
(1)如图a,当三角板的两边分别交AB、AC于点E、F时.求证:△BPE∽△CFP;
(2)操作:将三角板绕点P旋转到图b情形时,三角板的两边分别交BA的延长线、边AC于点E、F.
①探究1:△BPE与△CFP还相似吗?(只需写出结论)
②探究2:连接EF,△BPE与△PFE是否相似?请说明理由;
③设EF=m,△EPF的面积为S,试用m的代数式表示S.
查看答案
点D为Rt△ABC的斜边AB上一点,点E在AC上,连接DE,CD,且∠ADE=∠BCD,CF⊥CD交DE的延长线于点F,连接AF
(1)如图1,若AC=BC,求证:AF⊥AB;
(2)如图2,若AC≠BC,当点D在AB上运动时,求证:AF⊥AB.
查看答案
某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.
(1)请把三个图表中的空缺部分都补充完整;
(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).
编号 | 教学方式 | 最喜欢的频数 | 频率 |
1 | 教师讲,学生听 | 20 | 0.10 |
2 | 教师提出问题,学生探索思考 | | 0.5 |
3 | 学生自行阅读教材,独立思考 | 30 | |
4 | 分组讨论,解决问题 | | 0.25 |
查看答案
如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动.
(1)当点D运动到与点A、O在同一条直线上时,试证明直线CD与⊙O相切;
(2)当直线CD与⊙O相切时,求CD所在直线对应的函数关系式;
(3)设点D的横坐标为x,正方形ABCD的面积为S,求S与x之间的函数关系式,并求出S的最大值与最小值.
查看答案
一种长方形餐桌的四周可以坐6人用餐(带阴影的小长方形表示1个人的位置)、现把n张这样的餐桌按如图方式拼接起来.
(1)问四周可以坐多少人用餐?(用n的代数式表示)
(2)若有28人用餐,至少需要多少张这样的餐桌?
查看答案