2的相反数是( )
A.-2
B.2
C.
D.
考点分析:
相关试题推荐
如图,已知抛物线l
1:y=x
2-4的图象与x有交于A、C两点,
(1)若抛物线l
2与l
1关于x轴对称,求l
2的解析式;
(2)若点B是抛物线l
1上的一动点(B不与A、C重合),以AC为对角线,A、B、C三点为顶点的平行四边形的第四个顶点定为D,求证:点D在l
2上;
(3)探索:当点B分别位于l
1在x轴上、下两部分的图象上时,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它的面积;若不存在,请说明理由.
查看答案
●探究:
(1)在图中,已知线段AB,CD,其中点分别为E,F.
①若A(-1,0),B(3,0),则E点坐标为______;
②若C(-2,2),D(-2,-1),则F点坐标为______;
(2)在图中,已知线段AB的端点坐标为A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程.
●归纳:
无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=______.(不必证明)
●运用:
在图中,一次函数y=x-2与反比例函数
的图象交点为A,B.
①求出交点A,B的坐标;
②若以A,O,B,P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标.
查看答案
为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,我市决定从2010年3月1日起,在全市部分社区试点实施生活垃圾分类处理.某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.有A、B两种类型处理点的占地面积可供使用居民楼幢数及造价见下表:
类型 | 占地面积/m2 | 可供使用幢数 | 造价(万元) |
A | 15 | 18 | 1.5 |
B | 20 | 30 | 2.1 |
已知可供建造垃圾初级处理点占地面积不超过370m
2,该街道共有490幢居民楼.
(1)满足条件的建造方案共有几种?写出解答过程.
(2)通过计算判断,哪种建造方案最省钱,最少需要多少万元?
查看答案
如图,AB是⊙O的直径,C是
的中点,CE⊥AB于E,BD交CE于点F.
(1)求证:CF﹦BF;
(2)若CD﹦6,AC﹦8,则⊙O的半径为______,CE的长是______.
查看答案
已知:如图,四边形ABCD是平行四边形,DE∥AC,交BC的延长线于点E,EF⊥AB于点F,求证:AD=CF.
查看答案