满分5 > 初中数学试题 >

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b). (1)求b+c...

已知:抛物线y=x2+(b-1)x+c经过点P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求这条抛物线的顶点坐标;
(3)若b>3,过点P作直线PA⊥y轴,交y轴于点A,交抛物线于另一点B,且BP=2PA,求这条抛物线所对应的二次函数关系式.(提示:请画示意图思考)
(1)因为抛物线y=x2+(b-1)x+c经过点P(-1,-2b),所以将点P代入解析式即可求得; (2)因为b=3,所以求得c的值,即可求得抛物线的解析式,然后利用配方法求出顶点坐标; (3)解此题的关键是首先确定函数的草图,即开口方向是向上,对称轴为x=,在y轴的左侧,根据题意确定点B的坐标;因为点P与点B关于对称轴对称,所以确定对称轴方程,从而求得b、c的值,求得函数解析式. 【解析】 (1)依题意得:(-1)2+(b-1)(-1)+c=-2b (2分) ∴b+c=-2.(3分) (2)当b=3时,c=-5,(4分) ∴y=x2+2x-5=(x+1)2-6, ∴抛物线的顶点坐标是(-1,-6).(6分) (3)当b>3时,抛物线对称轴x= ∴对称轴在点P的左侧 因为抛物线是轴对称图形,P(-1,-2b)且BP=2PA ∴B(-3,-2b) (9分) ∴=-2, ∴b=5 (10分) 又b+c=-2, ∴c=-7 (11分) ∴抛物线所对应的二次函数关系式为y=x2+4x-7. (12分) 解法2:(3) 当b>3时,-b<-3,1-b<-2,则x=-=<-1, ∴对称轴在点P的左侧,因为抛物线是轴对称图形 ∵P(-1,-2b),且BP=2PA, ∴B(-3,-2b) (9分) ∴(-3)2-3(b-1)+c=-2b(10分) 又b+c=-2, 解得b=5,c=-7(11分) 这条抛物对应的二次函数关系式为y=x2+4x-7.(12分) 解法3:(3)∵b+c=-2, ∴c=-b-2 ∴y=x2+(b-1)x-b-2( 7分) BP∥x轴, ∴x2+(b-1)x-b-2=-2b( 8分) 即x2+(b-1)x+b-2=0 解得:x1=-1,x2=-(b-2),即xB=-(b-2)10分 由BP=2PA, ∴-1+(b-2)=2×1 ∴b=5,c=-7  (11分) ∴抛物线所对应的二次函数关系式为y=x2+4x-7.(12分)
复制答案
考点分析:
相关试题推荐
在“首届中国西部(银川)房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共1000辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.
manfen5.com 满分网
(1)参加展销的D型号轿车有多少辆?
(2)请你将图2的统计图补充完整;
(3)通过计算说明,哪一种型号的轿车销售情况最好?
(4)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.
查看答案
已知,如图,AB与⊙O相切于点B,连接OA交⊙O于C,弦BE⊥OA于点D,AC=6,∠A=30°.
(1)求⊙O的半径;
(2)求BE的长度.

manfen5.com 满分网 查看答案
解分式方程:manfen5.com 满分网
查看答案
如图所示,甲、乙、丙、丁四个长方形拼成正方形EFGH,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm2,四边形ABCD的面积是20cm2,则甲、乙、丙、丁四个长方形周长的总和为    cm.
manfen5.com 满分网 查看答案
有一群麻雀,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只麻雀对地上觅食的麻雀说:“若从你们中飞上来一只,则树下的麻雀就是这群麻雀总数的manfen5.com 满分网;若从树上飞下去一只,则树上、树下的麻雀就一样多了.”那么这群麻雀一共有    只. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.