满分5 > 初中数学试题 >

如图1所示,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段...

如图1所示,在正方形ABCD中,AB=1,manfen5.com 满分网是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的任意一点(点E与点A、D不重合),过E作AC所在圆的切线,交边DC于点F,G为切点.
(1)当∠DEF=45°时,求证:点G为线段EF的中点;
(2)设AE=x,FC=y,求y关于x的函数解析式,并写出函数的定义域;
(3)图2所示,将△DEF沿直线EF翻折后得△D1EF,当EF=manfen5.com 满分网时,讨论△AD1D与△ED1F是否相似,如果相似,请加以证明;如果不相似,只要求写出结论,不要求写出理由.

manfen5.com 满分网
(1)根据等腰三角形的三线合一进行证明,能够熟练运用等腰直角三角形的性质和切线长定理发现G为线段EF的中点; (2)根据切线长定理、正方形的性质得到有关的线段用x,y表示,再根据勾股定理建立函数关系式. (3)结合(2)中的函数关系式,求得x的值.分两种情况分别分析,根据切线长定理找到角之间的关系,从而发现正方形,根据正方形的性质得到两个角对应相等,从而证明三角形相似. (1)证明:∵∠DEF=45°, ∴∠DFE=90°-∠DEF=45°. ∴∠DFE=∠DEF. ∴DE=DF. 又∵AD=DC, ∴AE=FC. ∵AB是圆B的半径,AD⊥AB, ∴AD切圆B于点A. 同理:CD切圆B于点C. 又∵EF切圆B于点G, ∴AE=EG,FC=FG. ∴EG=FG,即G为线段EF的中点. (2)【解析】 根据(1)中的线段之间的关系,得EF=x+y,DE=1-x,DF=1-y, 根据勾股定理,得: (x+y)2=(1-x)2+(1-y)2 ∴y=(0<x<1). (3)【解析】 当EF=时,由(2)得EF=EG+FG=AE+FC, 即x+=, 解得x1=,x2=. 经检验x1=,x2=是原方程的解. ①当AE=时,△AD1D∽△ED1F, 证明:设直线EF交线段DD1于点H,由题意,得: △EDF≌△ED1F,EF⊥DD1且DH=D1H. ∵AE=,AD=1, ∴AE=ED. ∴EH∥AD1,∠AD1D=∠EHD=90°. 又∵∠ED1F=∠EDF=90°, ∴∠ED1F=∠AD1D. ∴D1F∥AD, ∴∠ADD1=∠DD1F=∠EFD=45°, ∴△ED1F∽△AD1D. ②当AE=时,△ED1F与△AD1D不相似.
复制答案
考点分析:
相关试题推荐
如图,正三角形ABC的中心O恰好为扇形ODE的圆心,且点B在扇形内,要使扇形ODE绕点O无论怎样转动,△ABC与扇形重叠部分的面积总等于△ABC的面积的manfen5.com 满分网,扇形的圆心角应为多少度?说明你的理由.

manfen5.com 满分网 查看答案
已知抛物线y=-x2+(m-4)x+2m+4与x轴交于点A(x1,0)、B(x2,0)两点,与y轴交于点C,且x1<x2,x1+2x2=0.若点A关于y轴的对称点是点D.
(1)求过点C、B、D的抛物线的解析式;
(2)若P是(1)中所求抛物线的顶点,H是这条抛物线上异于点C的另一点,且△HBD与△CBD的面积相等,求直线PH的解析式.
查看答案
如图,∠POQ=90°,边长为2cm的正方形ABCD的顶点B在OP上,C在OQ上,且∠OBC=30°,分别求点A、D到OP的距离.

manfen5.com 满分网 查看答案
如图所示,在▱ABCD中,点E,F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已知标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只须证明一组线段相等即可).
(1)连接______
(2)猜想:______=______
(3)证明.

manfen5.com 满分网 查看答案
下表是某一周甲、乙两种股票每天的收盘价(收盘价是每天股票交易结束时的价格)
时间
收盘价(元/股)   
名称

星期一

星期二

星期三

星期四

星期五
1212.512.912.4512.75
13.513.313.913.413.15
某人在该周内持有若干股甲、乙两种股票.若按照两种股票每天收盘价计算(不计手续费、税费等),该人帐户上星期二比星期一获利200元,星期三比星期二获利1300元,试问他星期四比星期三亏了多少元?
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.