满分5 > 初中数学试题 >

已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=x-a...

已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=manfen5.com 满分网x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.
(1)试用含a的代数式分别表示点M与N的坐标;
(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积;
(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.
manfen5.com 满分网
(1)已知了抛物线的解析式,不难用公式法求出M的坐标为(1,a-1).由于抛物线过A点,因此A的坐标是(0,a).根据A,M的坐标,用待定系数法可得出直线AM的解析式为y=-x+a.直线AM和y=x-a联立方程组即可求出N的坐标为(a,-a). (2)根据折叠的性质不难得出N与N′正好关于y轴对称,因此N′的坐标为(-a,-a).由于N′在抛物线上,因此将N′的坐标代入抛物线的解析式中即可得出a的值.也就能确定N,C的坐标.求四边形ADCN的面积,可分成△ANC和△ADC两部分来求.已经求得了A,C,N的坐标,可求出AC的长以及N,D到y轴的距离.也就能求出△ANC和△ADC的面积,进而可求出四边形ADCN的面积. (3)本题可分两种情况进行讨论: ①当P在y轴左侧时,如果使以P,N,A,C为顶点的四边形为平行四边形,那么P需要满足的条件是PN平行且相等于AC,也就是说,如果N点向上平移AC个单位即-2a后得到的点就是P点.然后将此时P的坐标代入抛物线中,如果没有解说明不存在这样的点P,如果能求出a的值,那么即可求出此时P的坐标. ②当P在y轴右侧时,P需要满足的条件是PN与AC应互相平分(平行四边形的对角线互相平分),那么NP必过原点,且关于原点对称.那么可得出此时P的坐标,然后代入抛物线的解析式中按①的方法求解即可. 【解析】 (1)M(1,a-1),N(a,-a); (2)∵由题意得点N与点N′关于y轴对称, ∴N′(-a,-a). 将N′的坐标代入y=x2-2x+a得: -a=a2+a+a, ∴a1=0(不合题意,舍去),. ∴N(-3,), ∴点N到y轴的距离为3. ∵A(0,-),N'(3,), ∴直线AN'的解析式为,它与x轴的交点为D() ∴点D到y轴的距离为. ∴S四边形ADCN=S△ACN+S△ACD=××3+××=; (3)存在,理由如下: 当点P在y轴的左侧时,若ACPN是平行四边形,则PN平行且等于AC, 则把N向上平移-2a个单位得到P,坐标为(a,-a),代入抛物线的解析式, 得:-a=a2-a+a, 解得a1=0(不舍题意,舍去),a2=-, 则P(-,); 当点P在y轴的右侧时,若APCN是平行四边形,则AC与PN互相平分, 则OA=OC,OP=ON. 则P与N关于原点对称, 则P(-a,a); 将P点坐标代入抛物线解析式得:a=a2+a+a, 解得a1=0(不合题意,舍去),a2=-, 则P(,-). 故存在这样的点P1(-,)或P2(,-),能使得以P,A,C,N为顶点的四边形是平行四边形.
复制答案
考点分析:
相关试题推荐
已知关于x函数y=(2-k)x2-2x+k
(1)若此函数的图象与坐标轴只有2个交点,求k的值.
(2)求证:关于x的一元二次方程(2-k)x2-2x+k=0必有一个根是1.
查看答案
(1)操作发现:
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:
保持(1)中的条件不变,若DC=2DF,求manfen5.com 满分网的值;
(3)类比探求:
保持(1)中条件不变,若DC=nDF,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
四中的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级非常了解比较了解基本了解不太了解
频数7515360n
频率0.25m0.20.04
manfen5.com 满分网
(1)本次问卷调查取样的样本容量为______,表中的m值为______;n值为______
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?
查看答案
如图,AB为⊙O的直径,劣弧manfen5.com 满分网,BD∥CE,连接AE并延长交BD于D.
(1)求证:BD是⊙O的切线;
(2)若⊙O的半径为2cm,AC=3cm,求BD的长.

manfen5.com 满分网 查看答案
如图,在梯形ABCD中,AB∥CD,AB=2,AD=4,tanC=manfen5.com 满分网,∠ADC=∠DAB=90°,P是腰BC上一个动点(不含点B、C),作PQ⊥AP交CD于点Q(图1)
(1)求BC的长与梯形ABCD的面积;
(2)当PQ=DQ时,求BP的长.(图2)

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.