满分5 > 初中数学试题 >

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF...

如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2.动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动.连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PWQ.设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒.试解答下列问题:
(1)说明△FMN∽△QWP;
(2)设0≤x≤4(即M从D到A运动的时间段).试问x为何值时,△PWQ为直角三角形?当x在何范围时,△PQW不为直角三角形?
(3)问当x为何值时,线段MN最短?求此时MN的值.
manfen5.com 满分网
(1)由平行线的性质可得∠QPW=∠MNF,∠PQW=NFM,故有△FMN∽△QWP; (2)当△FMN是直角三角形时,△QWP也为直角三角形,当MF⊥FN时,证得△DFM∽△GFN,有DF:FG=DM:GN,得到4-x=2x,求得x此时的值,当MG⊥FN时,点M与点A重合,点N与点G重合,此时x=AD=4; (3)当点F、M、N在同一直线上时,MN最短,设经过的时间为x,AM的长度为(4-x),AN的长度为(6-x),再由△MAN∽△MBF即可求出答案. 【解析】 (1)根据三角形中位线定理得 PQ∥FN,PW∥MN, ∴∠QPW=∠PWF,∠PWF=∠MNF, ∴∠QPW=∠MNF. 同理∠PQW=∠NFM, ∴△FMN∽△QWP; (2)由于△FMN∽△QWP,故当△QWP是直角三角形时,△FMN也为直角三角形. 作FG⊥AB,则四边形FCBG是正方形,有GB=CF=CD-DF=4,GN=GB-BN=4-x,DM=x, ①当MF⊥FN时, ∵∠DFM+∠MFG=∠MFG+∠GFN=90°, ∴∠DFM=∠GFN. ∵∠D=∠FGN=90°, ∴△DFM∽△GFN, ∴DF:FG=DM:GN=2:4=1:2, ∴GN=2DM, ∴4-x=2x, ∴x=; ②当MN⊥FN时,点M与点A重合,点N与点G重合, ∴x=AD=GB=4. ∴当x=4或时,△QWP为直角三角形,当0≤x<,<x<4时,△QWP不为直角三角形. (3)①当0≤x≤4,即M从D到A运动时,只有当x=4时,MN的值最小,等于2;  ②当4<x≤6时,MN2=AM2+AN2=(x-4)2+(6-x)2 =2(x-5)2+2 当x=5时,MN2=2,故MN取得最小值, 故当x=5时,线段MN最短,MN=.
复制答案
考点分析:
相关试题推荐
已知抛物线y=x2-2x+a(a<0)与y轴相交于点A,顶点为M.直线y=manfen5.com 满分网x-a分别与x轴,y轴相交于B,C两点,并且与直线AM相交于点N.
(1)试用含a的代数式分别表示点M与N的坐标;
(2)如图,将△NAC沿y轴翻折,若点N的对应点N′恰好落在抛物线上,AN′与x轴交于点D,连接CD,求a的值和四边形ADCN的面积;
(3)在抛物线y=x2-2x+a(a<0)上是否存在一点P,使得以P,A,C,N为顶点的四边形是平行四边形?若存在,求出P点的坐标;若不存在,试说明理由.
manfen5.com 满分网
查看答案
已知关于x函数y=(2-k)x2-2x+k
(1)若此函数的图象与坐标轴只有2个交点,求k的值.
(2)求证:关于x的一元二次方程(2-k)x2-2x+k=0必有一个根是1.
查看答案
(1)操作发现:
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在矩形ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决:
保持(1)中的条件不变,若DC=2DF,求manfen5.com 满分网的值;
(3)类比探求:
保持(1)中条件不变,若DC=nDF,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
四中的一个数学兴趣小组在本校学生中开展主题为“垃圾分类知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,划分等级后的数据整理如下表:
等级非常了解比较了解基本了解不太了解
频数7515360n
频率0.25m0.20.04
manfen5.com 满分网
(1)本次问卷调查取样的样本容量为______,表中的m值为______;n值为______
(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图所对应的扇形的圆心角的度数,并补全扇形统计图;
(3)若该校有学生1500人,请根据调查结果估计这些学生中“比较了解”垃圾分类知识的人数约为多少?
查看答案
如图,AB为⊙O的直径,劣弧manfen5.com 满分网,BD∥CE,连接AE并延长交BD于D.
(1)求证:BD是⊙O的切线;
(2)若⊙O的半径为2cm,AC=3cm,求BD的长.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.