如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=
x-6
,分别与x轴y轴相交于A、B两点.点C在射线BA上以3cm/秒的速度运动,以C点为圆心作半径为1cm的⊙C.点P以2cm/秒的速度在线段OA上来回运动,过点P作直线l垂直与x轴.
(1)求A、B两点的坐标;
(2)若点C与点P同时从点B、点O开始运动,求直线l与⊙C第2次相切时点P的坐标;
(3)在整个运动过程中,直线l与⊙C有交点的时间共有多少秒?
考点分析:
相关试题推荐
已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.
(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:______.
(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:______.并证明你的结论.
(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是______cm
2.
查看答案
小明家打算建一个苗圃,苗圃的两边靠墙(这两堵墙互相垂直),另外的部分用30米长的篱笆围成.小明的爸爸提出一个问题:怎样围才能使苗圃的面积尽可能地大?小明思考后,设计了以下三种方案:
方案一:围成斜边为30米的等腰直角三角形(如图1);
方案二:围成边长为15米的正方形(如图2);
方案三:围成直角梯形,其中∠BCD=120°(如图3).
解答下列问题:
(1)分别计算方案一、方案二中苗圃的面积S
1,S
2,并比较S
1,S
2的大小;
(2)设方案三中CD的长为x米,苗圃的面积为S
3平方米,求S
3与x之间的函数关系式,并求出S
3的最大值;
(3)请你设计一种方案,使围成的苗圃面积比上述三个方案中的任何一个面积都大.(要求在图4中画出草图,标上必要的数据,并通过计算加以说明)
查看答案
王华在某制衣厂工作,他应按设计师的要求在衣服上镶嵌一种直角三角形形状的皮草(如图1).但王华不小心裁反了,裁成如图2的形状.为了不浪费昂贵的材料,聪明的王华发现只要在裁反的材料(图2)上剪一刀,把图2分成两块,就可以再拼成图1的形状.请在图2中画出裁剪线(要求:尺规作图,保留作图痕迹,不写作法.)
查看答案
随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A,B两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:有两种配货方案(整箱配货):
| A种水果/箱 | B种水果/箱 |
甲店 | 11元 | 17元 |
乙店 | 9元 | 13元 |
方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;
方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店______箱,乙店______箱;B种水果甲店______箱,乙店______箱.
(1)如果按照方案一配货,请你计算出经销商能盈利多少元;
(2)请你将方案二填写完整(只写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多;
(3)在甲、乙两店各配货10箱,且保证乙店盈利不少于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?
查看答案
如图,是两个可以自由转动的均匀转盘A,B,转盘A被分成4等份,每份分别标上1,2,3,4四个数字;转盘B被分成6等份,每份分别标上1,2,3,4,5,6六个数字,现为甲,乙两人设计一个游戏,其规则如下:
①同时自由转盘转盘A,B;
②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘.如果得到的积是偶数,那么甲胜;如果得到的积是奇数,则乙胜.
你认为这样的规则是否公平?请说明理由;如果不公平,请你设计一个公平的规则,并说明道理.
查看答案