满分5 > 初中数学试题 >

下列运算正确的是( ) A.a2×a2=2a2 B.2a2+3a2=5a4 C....

下列运算正确的是( )
A.a2×a2=2a2
B.2a2+3a2=5a4
C.(a33=a9
D.a6÷a3=a2
根据同底数幂乘法,底数不变指数相加;合并同类项,只把系数相加减,字母与字母的次数不变;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解. 【解析】 A、应为a2×a2=a4,故本选项错误; B、应为2a2+3a2=5a2,故本选项错误; C、(a3)3=a9,正确; D、应为a6÷a3=a3,故本选项错误. 故选C.
复制答案
考点分析:
相关试题推荐
-manfen5.com 满分网的相反数是( )
A.-2
B.manfen5.com 满分网
C.2
D.-manfen5.com 满分网
查看答案
本区某校对学生开展“不闯红灯,珍爱生命”的教育,为此校学生会委员在某天到市中心某十字路口,观察、统计上午7:00~12:00之间闯红灯的人次,制作了如下两个统计图:
manfen5.com 满分网
(1)图一中各时段闯红灯人次的平均数为______人次;
(2)图一中各时段闯红灯人次的中位数是______人次;
(3)该路口这一天上午7:00~12:00之间闯红灯的未成年人有______人次;
(4)估计一周(七天)内该路口上午7:00~12:00之间闯红灯的中青年约有______人次;
(5)是否能以此估计全市这一天上午7:00~12:00之间所有路口闯红灯的人次?
答:______.为什么?答:______
查看答案
综合实践
问题背景
某课外兴趣小组在一次折纸活动中,折叠一张带有条格的长方形纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格所在直线的交点,用平滑的曲线顺次连接各交点,得到一条曲线.
探索
如图2,在平面直角坐标系xOy中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=m,AD=n(m≤n),将纸片折叠,MN是折痕,使点B落在边AD上的E处,过点E作EQ⊥BC,垂足为Q,交直线MN于点P,连接OP
(1)求证:四边形OMEP是菱形;
(2)设点P坐标为(x,y),求y与x之间的函数关系式,并写出自变量x的取值范围.(用含m、n的式子表示)
运用
(3)将长方形纸片ABCD如图3所示放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在K,使得△KCF的面积是△KOC面积的manfen5.com 满分网,若存在,写出点K的坐标;若不存在,请说明理由.
manfen5.com 满分网
查看答案
已知边长为10的菱形ABCD,对角线BD=16,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F.
(1)如图1,求证:△PBE∽△PDF;
(2)连接PC,当PE+PF+PC取最小值时,求PB的长;
(3)如图2,对角线BD、AC交于点O,以PO为半径(PO>0)的⊙P与以DF为半径的⊙D相切时,求PB的长.
manfen5.com 满分网
查看答案
如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.