满分5 > 初中数学试题 >

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,...

在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,且点A(0,2),点C(-1,0),如图所示:抛物线y=ax2+ax-2经过点B.
(1)求点B的坐标;
(2)求抛物线的解析式;
(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据题意,过点B作BD⊥x轴,垂足为D;根据角的互余的关系,易得B到x、y轴的距离,即B的坐标; (2)根据抛物线过B点的坐标,可得a的值,进而可得其解析式; (3)首先假设存在,分A、C是直角顶点两种情况讨论,根据全等三角形的性质,可得答案. 【解析】 (1)过点B作BD⊥x轴,垂足为D, ∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°, ∴∠BCD=∠CAO,(1分) 又∵∠BDC=∠COA=90°,CB=AC, ∴△BCD≌△CAO,(2分) ∴BD=OC=1,CD=OA=2,(3分) ∴点B的坐标为(-3,1);(4分) (2)抛物线y=ax2+ax-2经过点B(-3,1), 则得到1=9a-3a-2,(5分) 解得a=, 所以抛物线的解析式为y=x2+x-2;(7分) (3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形: ①若以点C为直角顶点; 则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,(8分) 过点P1作P1M⊥x轴, ∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°, ∴△MP1C≌△DBC.(10分) ∴CM=CD=2,P1M=BD=1,可求得点P1(1,-1);(11分) ②若以点A为直角顶点; 则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,(12分) 过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,(13分) ∴NP2=OA=2,AN=OC=1,可求得点P2(2,1),(14分) 经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=x2+x-2上.(16分)
复制答案
考点分析:
相关试题推荐
一、问题背景:
某校九年级(1)班课题学习小组对家庭煤气的使用量做了研究,其实验过程和对数据的处理如下.
仔细观察现在家庭使用的电子打火煤气灶,发现当关着煤气的时候,煤气旋钮(以下简称旋钮)的位置为竖起方向,把这个位置定为0°,煤气开到最大时,位置为90度.(以0°位置作起始边,旋钮和起始边的夹角).在0~90°之间平均分成五等分,代表不同的煤气流量,它们分别是18°,36°,54°,72°,90°,见图1.
manfen5.com 满分网
在这些位置上分别以烧开一壶水(3.75升)为标准,记录所需的时间和所用的煤气量.并根据旋钮位置以及烧开一壶水所需时间(用t表示)、所用煤气量(用v表示),计算出不同旋钮位置所代表的煤气流量(用L表示),L=v/t,数据见右表.这样就可以研究煤气流量和烧开一壶水所需时间及用气量之间的关系了.
位置烧开一壶水所需流量
时间(分)煤气量(m3m3/分
18°190.130.0068
36°160.120.0076
54°130.140.0107
72°120.150.0124
90°100.170.0172
二、任务要求:
manfen5.com 满分网
1、作图:将下面图2中的直方图补充完整;在图3中作出流量与时间的折线图.
2、填空:①从图2可以看出,烧开-壶水所耗用的最少煤气量为______m2,此时旋钮位置在______
②从图3可以看出,不考虑煤气用量,烧开一壶水所用的最短时间为______分钟,此时旋钮位置在______
3、通过实验,请你对上述结果(用煤气烧水最省时和最省气)作一个简要的说明.
查看答案
如图,以Rt△ABC的直角边AB为直径作圆O与斜边AC交于点D,E为BC边的中点,连接DE.
(1)DE与⊙O什么位置关系?并说明理由.
(2)连接OE、AE,当△ABC满足什么条件时,四边形AOED是平行四边形?在此条件下,sin∠CAE的值是多少?

manfen5.com 满分网 查看答案
在一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行20米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,帮助该同学计算出这条河的宽度.(参考数值:tan31°≈manfen5.com 满分网,sin31°≈manfen5.com 满分网

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:
(1)AE=BF;
(2)AE⊥BF.
查看答案
化简求值:manfen5.com 满分网,其中x=manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.