满分5 > 初中数学试题 >

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,O...

如图,已知在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.
(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,求出P、Q两点的坐标.

manfen5.com 满分网
(1)利用待定系数法代入求出二次函数解析式即可; (2)利用配方法求出二次函数顶点坐标,再利用GH是△BEA的中位线.得出EA=3GH=.进而得出CF=FM+CM得出答案; (3)根据要使四边形BCPQ的周长最小,可将点C向上平移一个单位,再做关于对称轴对称的对称点C1,求出直线BC1的解析式,以及P、Q两点的坐标. 【解析】 (1)由题意得A(0,2)、B(2,2)、C(3,0). 设经过A,B,C三点的抛物线的解析式为y=ax2+bx+2. 则, 解得, ∴. (2)由=. ∴顶点坐标为G(1,). 过G作GH⊥AB,垂足为H. 则AH=BH=1,GH=-2=. ∵EA⊥AB,GH⊥AB, ∴EA∥GH. ∴GH是△BEA的中位线. ∴EA=2GH=. 过B作BM⊥OC,垂足为M.则MB=OA=AB. ∵∠EBF=∠ABM=90°, ∴∠EBA=∠FBM=90°-∠ABF. ∴Rt△EBA≌Rt△FBM. ∴FM=EA=. ∵CM=OC-OM=3-2=1, ∴CF=FM+CM=. (3)要使四边形BCPQ的周长最小, 将B向下平移一个单位至K,取C关于对称轴对称点M. 连接KM交对称轴于P,将P向上平移1个单位至Q, 可使KP+PM最短.则QPKB为平行四边形, QB=PK, 连接CP,轴对称求出CP=MP, 则CP+BQ最小, 因为CB,QP定值,则四边形BCPQ周长最短, ∵将点C向上平移一个单位,坐标为(3,1),再做关于对称轴对称的对称点C1, ∴得点C1的坐标为(-1,1). 可求出直线BC1的解析式为. 直线与对称轴x=1的交点即为点Q,坐标为Q(1,). ∴点P的坐标为(1,).
复制答案
考点分析:
相关试题推荐
如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿CB方向平移得到的,连接AE,AC和BE相交于点O.
(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点Q,QR⊥BD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,以点P、Q、R为顶点的三角形与△BOC相似?
manfen5.com 满分网
查看答案
已知关于x的一元二次方程x2+2ax+b2=0,a>0,b>0.
(1)若方程有实数根,试确定a,b之间的大小关系;
(2)若a:b=2:manfen5.com 满分网,且2x1-x2=2,求a,b的值;
(3)在(2)的条件下,二次函数y=x2+2ax+b2的图象与x轴的交点为A、C(点A在点C的左侧),与y轴的交点为B,顶点为D.若点P(x,y)是四边形ABCD边上的点,试求3x-y的最大值.
查看答案
如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.
(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).manfen5.com 满分网
manfen5.com 满分网
查看答案
某商店在四个月的试销期内,只销售A,B两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图1和图2.
(1)第四个月销量占总销量的百分比是______
(2)在图2中补全表示B品牌电视机月销量的折线图;
(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.
manfen5.com 满分网
查看答案
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径为3,sin∠ADE=manfen5.com 满分网,求AE的值.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.