一次函数y=ax+b的图象分别与x轴、y轴交于点M,N,与反比例函数y=
的图象相交于点A,B.过点A分别作AC⊥x轴,AE⊥y轴,垂足分别为C,E;过点B分别作BF⊥x轴,BD⊥y轴,垂足分别为F,D,AC与BD交于点K,连接CD.
(1)若点A,B在反比例函数y=
的图象的同一分支上,如图1,试证明:
①S
四边形AEDK=S
四边形CFBK;②AN=BM.
(2)若点A,B分别在反比例函数y=
的图象的不同分支上,如图2,则AN与BM还相等吗?试证明你的结论.
考点分析:
相关试题推荐
如图,已知:四边形AEBD中,对角线AB和DE相交于点C,且AB垂直平分DE,AC=a,BC=b,CD=
,其中a≥b>0.
(1)用尺规作图法作出以AB为直径的⊙O(保留作图痕迹)
(2)试判断点D与⊙O的位置关系,并说明理由;
(3)试估计代数式a+b和2
的大小关系,并利用图形中线段的数量关系证明你的结论.
查看答案
凯里市某大型酒店有包房100间,在每天晚餐营业时间,每间包房收包房费100元时,包房便可全部租出;若每间包房收费提高20元,则减少10间包房租出,若每间包房收费再提高20元,则再减少10间包房租出,以每次提高20元的这种方法变化下去.
(1)设每间包房收费提高x(元),则每间包房的收入为y
1(元),但会减少y
2间包房租出,请分别写出y
1,y
2与x之间的函数关系式.
(2)为了投资少而利润大,每间包房提高x(元)后,设酒店老板每天晚餐包房总收入为y(元),请写出y与x之间的函数关系式,求出每间包房每天晚餐应提高多少元可获得最大包房费收入,并说明理由.
查看答案
如图,AB=BC,以AB为直径的⊙O交AC于点D,过D作DE⊥BC,垂足为E.
(1)求证:DE是⊙O的切线;
(2)作DG⊥AB交⊙O于G,垂足为F,若∠A=30°,AB=8,求弦DG的长.
查看答案
如图所示,在单位长度为1的正方形网格中,已知Rt△DAE,∠A=90°,将△DAE绕点D逆时针旋转90°后得到△DCF(∠C=90°),再将△DCF沿DA向左平移6个单位长度后得到△ABH(∠B=90°).
(1)画出△DCF及△ABH;
(2)AH与DE有怎样的位置关系?请证明你的结论;
(3)若AH与DE相交于点G,求AG的长.
查看答案
某中学的九年级学生在社会实践中,向身边的市民们调查了某天出行所用的交通工具,并将调查结果分别用图1扇形统计图和图2的折线统计图(不完整)表示.
(1)求这次调查的总人数;
(2)补全折线统计图;
(3)请你结合市民们选择交通工具的数量情况,就城市交通给政府提出一条合理化建议.
查看答案