满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线y=-x+4分别交x轴、y轴于A、B两点. (1)...

如图,在平面直角坐标系中,直线y=-manfen5.com 满分网x+4分别交x轴、y轴于A、B两点.
(1)求两点的坐标;
(2)设是直线AB上一动点(点P与点A不重合),设⊙P始终和x轴相切,和直线AB相交于C、D两点(点C的横坐标小于点D的横坐标)设P点的横坐标为m,试用含有m的代数式表示点C的横坐标;
(3)在(2)的条件下,若点C在线段AB上,求m为何值时,△BOC为等腰三角形?

manfen5.com 满分网
(1)因为直线y=-x+4分别交x轴、y轴于A、B两点,所以分别令x=0、y=0,即可求出A、B的坐标; (2)设点C的横坐标为n.由(1)知AB==5,所以sin∠OBA=,要求点C的横坐标,可过C作CE⊥x轴于E,过P作PG⊥x轴于G,PF⊥CE于F,则∠FCP=∠OBA,PF=m-n. ①若m<3时,因为P点的横坐标为m,P在直线y=-x+4上,所以PC=PG=-m+4,利用三角函数可得PF=PC•sin∠FCP=PC•sin∠OBA,即可得到关于m、m的关系式,整理即可; ②当m>3时,P在x轴的下方,所以PC=PG=,PF=PC•sin∠FCP=PC•sin∠OBA,整理即可得到另一个m、n的关系式; (3)当点C在线段AB上时,由(2)知,C点的横坐标n=m-,因为△BOC为等腰三角形,所以需要分情况讨论: ①当CB=CO时,因为△OBA是直角三角形,∠BOA=90°,所以此时C为AB的中点,C点的横坐标为,即n=,即,解之即可; ②当CB=OB=4时,因为AB=5,可得AC=AB-CB=1,利用三角函数可得AE=AC•cos∠OAB=,又因OE+AE=OA,就可得到关于m的方程,解之即可; ③当OC=OB时,因为OB>OA,所以C在线段BA的延长线上,即在线段AB上不存在点C,使OC=OB. 【解析】 (1)当x=0时,y=4;当y=0时,-x+4=0,x=3. ∴A(3,0),B(0,4).(2分) (2)设点C的横坐标为n.由(1)知AB==5, ∴sin∠OBA=. 过C作CE⊥x轴于E,过P作PG⊥x轴于G,PF⊥CE于F, 则∠FCP=∠OBA,PF=m-n. ①当m<3时,∵PC=PG=-m+4, ∴PF=PC•sin∠FCP=PC•sin∠OBA, ∴m-n=(-m+4)×. 解得n=m-.(5分) ②当m>3时,PC=PG=,PF=PC•sin∠FCP=PC•sin∠OBA, ∴m-n=(m-4)×. 解得n=m+.(7分) (3)当点C在线段AB上时,由(2)知,C点的横坐标n=m-, 以下两种情况△BOC为等腰三角形. ①当CB=CO时, ∵△OBA是直角三角形,∠BOA=90度. ∴此时C为AB的中点, ∴C点的横坐标为. ∴,解得m=.(9分) ②当CB=OB时, ∵AB=5, ∴AC=AB-CB=1, ∴AE=AC•cos∠OAB=. ∵OE+AE=OA, ∴,解得m=. ∵OB>OA, ∴在线段AB上不存在点C,使OC=OB. 所以,当m=或m=时,△BOC为等腰三角形.(11分)
复制答案
考点分析:
相关试题推荐
杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.
(1)该动漫公司两次共购进这种玩具多少套?
(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元?
查看答案
如图,在矩形ABCD中,点O在对角AC上,以OA长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.
(1)求证:CE是⊙O的切线;
(2)若manfen5.com 满分网,AE=7,求⊙O的直径.

manfen5.com 满分网 查看答案
如图,一个被等分成了3个相同扇形的圆形转盘,3个扇形分别标有数字1、3、6,指针的位置固定,转动转盘后任其自由停止,其中的某个扇形会恰好停止在指针所指的位置(指针指向两个扇形的交线时,重新转动转盘).
(1)请用画树形图或列表的方法(只选其中一种),表示出分别转动转盘两次转盘自由停止后,指针所指扇形数字的所有结果;
(2)求分别转动转盘两次转盘自由停止后,指针所指扇形的数字之和的算术平方根为无理数的概率.

manfen5.com 满分网 查看答案
在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.
(1)求证:△BEC≌△DEC;
(2)延长BE交AD于F,当∠BED=120°时,求∠EFD的度数.

manfen5.com 满分网 查看答案
阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为408人,表1是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:
图书种类频数频率
科普常识840B
名人传记8160.34
漫画丛书A0.25
表(1)
其它
1440.06
(1)求该校八年级的人数占全校总人数的百分率;
(2)求表1中A,B的值;
(3)该校学生平均每人读多少本课外书?

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.