满分5 > 初中数学试题 >

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合...

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的动点(不与A,B重合),过M点作MN∥BC交AC于点N.以MN为直径作⊙O,并在⊙O内作内接矩形AMPN.令AM=x.
(1)用含x的代数式表示△MNP的面积S;
(2)当x为何值时,⊙O与直线BC相切;
(3)在动点M的运动过程中,记△MNP与梯形BCNM重合的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?
manfen5.com 满分网
(1)由于三角形PMN和AMN的面积相当,那么可通过求三角形AMN的面积来得出三角形PMN的面积,求三角形AMN的面积可根据三角形AMN和ABC相似,根据相似比的平方等于面积比来得出三角形AMN的面积; (2)当圆O与BC相切时,O到BC的距离就是MN的一半,那么关键是求出MN的表达式,可根据三角形AMN和三角形ABC相似,得出MN的表达式,也就求出了O到BC的距离的表达式,如果过M作MQ⊥BC于Q,那么MQ就是O到BC的距离,然后在直角三角形BMQ中,用∠B的正弦函数以及BM的表达式表示出MQ,然后让这两表示MQ的含x的表达式相等,即可求出x的值; (3)要求重合部分的面积首先看P点在三角形ABC内部还是外面,因此可先得出这两种情况的分界线即当P落到BC上时,x的取值,那么P落点BC上时,MN就是三角形ABC的中位线,此时AM=2,因此可分两种情况进行讨论: ①当0<x≤2时,此时重合部分的面积就是三角形PMN的面积,三角形PMN的面积(1)中已经求出,即可的x,y的函数关系式.②当2<x<4时,如果设PM,PN交BC于E,F,那么重合部分就是四边形MEFN,可通过三角形PMN的面积-三角形PEF的面积来求重合部分的面积.不难得出PN=AM=x,而四边形BMNF又是个平行四边形,可得出FN=BM,也就有了FN的表达式,就可以求出PF的表达式,然后参照(1)的方法可求出三角形PEF的面积,即可求出四边形MEFN的面积,也就得出了y,x的函数关系式.然后根据两种情况得出的函数的性质,以及对应的自变量的取值范围求出y的最大值即可. 【解析】 (1)∵MN∥BC, ∴∠AMN=∠B,∠ANM=∠C. ∴△AMN∽△ABC. ∴,即; ∴AN=x; ∴S=S△MNP=S△AMN=•x•x=x2.(0<x<4) (2)如图2,设直线BC与⊙O相切于点D,连接AO,OD,则AO=OD=MN. 在Rt△ABC中,BC==5; 由(1)知△AMN∽△ABC, ∴,即, ∴MN=x ∴OD=x, 过M点作MQ⊥BC于Q,则MQ=OD=x, 在Rt△BMQ与Rt△BCA中,∠B是公共角, ∴△BMQ∽△BCA, ∴, ∴BM=x,AB=BM+MA=x+x=4 ∴x=, ∴当x=时,⊙O与直线BC相切; (3)随点M的运动,当P点落在直线BC上时,连接AP,则O点为AP的中点. ∵MN∥BC, ∴∠AMN=∠B,∠AOM=∠APB, ∴△AMO∽△ABP, ∴, ∵AM=MB=2, 故以下分两种情况讨论: ①当0<x≤2时,y=S△PMN=x2, ∴当x=2时,y最大=×4=, ②当2<x<4时,设PM,PN分别交BC于E,F, ∵四边形AMPN是矩形, ∴PN∥AM,PN=AM=x, 又∵MN∥BC, ∴四边形MBFN是平行四边形; ∴FN=BM=4-x, ∴PF=x-(4-x)=2x-4, 又∵△PEF∽△ACB, ∴, ∴S△PEF=(x-2)2; y=S△MNP-S△PEF=x2-(x-2)2=-x2+6x-6, 当2<x<4时,y=-x2+6x-6=-(x-)2+2, ∴当x=时,满足2<x<4,y最大=2. 综上所述,当x=时,y值最大,最大值是2.
复制答案
考点分析:
相关试题推荐
为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.
(1)求这批赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;
(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:
A地B地C地
运往D县的费用(元/吨)220200200
运往E县的费用(元/吨)250220210
为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
查看答案
如图,反比例函数manfen5.com 满分网(k≠0)的图象经过点(-3,1),并与直线manfen5.com 满分网交于A(x1,y1)、B(x2,y2)两点,并且x1、x2满足manfen5.com 满分网
(1)求反比例函数的解析式;
(2)求m的值及△AOB的面积.

manfen5.com 满分网 查看答案
如图所示,点P表示广场上的一盏照明灯.
(1)请你在图中画出小敏在照明灯P照射下的影子(用线段表示);
(2)若小丽到灯柱MO的距离为4.5米,照明灯P到灯柱的距离为1.5米,小丽目测照明灯P的仰角为55°,她的目高QB为1.6米,试求照明灯P到地面的距离(结果精确到0.1米).
(参考数据:tan55°≈1.428,sin55°≈0.819,cos55°≈0.574)
manfen5.com 满分网
查看答案
如图,在梯形ABCD中,AD∥BC,BA=AD=DC,点E在边CB的延长线上,并且BE=AD,点F在边BC上.
(1)求证:AC=AE;
(2)如果∠AFB=2∠AEF,求证:四边形AFCD是菱形.

manfen5.com 满分网 查看答案
为了进一步了解八年级500名学生的身体素质情况,体育老师对八年级(1)班50名学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图如下所示:
组别次数x频数(人数)
第l组80≤x<1006
第2组100≤x<1208
第3组120≤x<140a
第4组140≤x<16018
第5组160≤x<1806
请结合图表完成下列问题:
(1)表中的a=______,次数在140≤x<160这组的频率为______
(2)请把频数分布直方图补充完整;
(3)这个样本数据的中位数落在第______组;
(4)若八年级学生一分钟跳绳次数(x)达标要求是:x<120不合格;x≥120为合格,则这个年级合格的学生有______人.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.