满分5 > 初中数学试题 >

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,...

如图,在平面直角坐标系中,已知点A坐标为(2,4),直线x=2与x轴相交于点B,连接OA,抛物线y=x2从点O沿OA方向平移,与直线x=2交于点P,顶点M到A点时停止移动.
(1)求线段OA所在直线的函数解析式;
(2)设抛物线顶点M的横坐标为m,
①用m的代数式表示点P的坐标;
②当m为何值时,线段PB最短;
(3)当线段PB最短时,相应的抛物线上是否存在点Q,使△QMA的面积与△PMA的面积相等?若存在,请求出点Q的坐标;若不存在,请说明理由.

manfen5.com 满分网
(1)根据A点的坐标,用待定系数法即可求出直线OA的解析式. (2)①由于M点在直线OA上,可根据直线OA的解析式来表示出M点的坐标,因为M点是平移后抛物线的顶点,因此可用顶点式二次函数通式来设出这个二次函数的解析式,P的横坐标为2,将其代入抛物线的解析式中即可得出P点的坐标. ②PB的长,实际就是P点的纵坐标,因此可根据其纵坐标的表达式来求出PB最短时,对应的m的值. (3)根据(2)中确定的m值可知:M、P点的坐标都已确定,因此AM的长为定值,若要使△QMA的面积与△PMA的面积相等,那么Q点到AM的距离和P到AM的距离应该相等,因此可分两种情况进行讨论: ①当Q在直线OA下方时,可过P作直线OA的平行线交y轴于C,那么平行线上的点到OA的距离可相等,因此Q点必落在直线PC上,可先求出直线PC的解析式,然后利用抛物线的解析式,看得出的方程是否有解,如果没有则说明不存在这样的Q点,如果有解,得出的x的值就是Q点的横坐标,可将其代入抛物线的解析式中得出Q点的坐标. ②当Q在直线OA上方时,同①类似,可先找出P关于A点的对称点D,过D作直线OA的平行线交y轴于E,那么直线DE上的点到AM的距离都等于点P到AM上的距离,然后按①的方法进行求解即可. (本题也可通过以AP为底,找出和点M到AP的距离相等的两条直线,然后联立抛物线的解析式进行求解即可). 【解析】 (1)设OA所在直线的函数解析式为y=kx, ∵A(2,4), ∴2k=4, ∴k=2, ∴OA所在直线的函数解析式为y=2x. (2)①∵顶点M的横坐标为m,且在线段OA上移动, ∴y=2m(0≤m≤2). ∴顶点M的坐标为(m,2m). ∴抛物线函数解析式为y=(x-m)2+2m. ∴当x=2时,y=(2-m)2+2m=m2-2m+4(0≤m≤2). ∴点P的坐标是(2,m2-2m+4). ②∵PB=m2-2m+4=(m-1)2+3, 又∵0≤m≤2, ∴当m=1时,PB最短. (3)当线段PB最短时,此时抛物线的解析式为y=(x-1)2+2 即y=x2-2x+3. 假设在抛物线上存在点Q,使S△QMA=S△PMA. 设点Q的坐标为(x,x2-2x+3). ①点Q落在直线OA的下方时,过P作直线PC∥AO,交y轴于点C, ∵PB=3,AB=4, ∴AP=1, ∴OC=1, ∴C点的坐标是(0,-1). ∵点P的坐标是(2,3), ∴直线PC的函数解析式为y=2x-1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x-1上. ∴x2-2x+3=2x-1. 解得x1=2,x2=2, 即点Q(2,3). ∴点Q与点P重合. ∴此时抛物线上存在点Q(2,3),使△QMA与△APM的面积相等. ②当点Q落在直线OA的上方时, 作点P关于点A的对称称点D,过D作直线DE∥AO,交y轴于点E, ∵AP=1, ∴EO=DA=1, ∴E、D的坐标分别是(0,1),(2,5), ∴直线DE函数解析式为y=2x+1. ∵S△QMA=S△PMA, ∴点Q落在直线y=2x+1上. ∴x2-2x+3=2x+1. 解得:x1=2+,x2=2-. 代入y=2x+1得:y1=5+2,y2=5-2. ∴此时抛物线上存在点Q1(2+,5+2),Q2(2-,5-2) 使△QMA与△PMA的面积相等. 综上所述,抛物线上存在点,Q1(2+,5+2),Q2(2-,5-2),Q3(2,3),使△QMA与△PMA的面积相等.
复制答案
考点分析:
相关试题推荐
(1)尝试:如图,已知A、E、B三点在同一直线上,且∠A=∠B=∠DEC=90°,
求证:AE•BE=AD•BC.
(2)一位同学在尝试了上题后还发现:如图2、图3,只要A、E、B三点在同一直线上,且∠A=∠B=∠DEC,则(1)中结论总成立.你同意吗?请选择其中之一说明理由.
manfen5.com 满分网
(3)运用:如图,四边形ABCD是等腰梯形,AD∥BC,AB=4,BC=9,P为BC边上一动点(不与点B、C重合),连接AP,过点P作PE交CD于点E,使得∠APE=∠ABC.则当BP为何值时,点E为CD的中点.

manfen5.com 满分网 manfen5.com 满分网 查看答案
学校为了解全校1600名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项.且不能不选.将调查得到的结果绘制成如图所示的频数分布直方图和扇形统计图(均不完整).
manfen5.com 满分网
(1)问:在这次调查中,一共抽取了多少名学生?
(2)补全频数分布直方图;
(3)估计全校所有学生中有多少人乘坐公交车上学?
查看答案
已知:如图,△ABC内接于⊙O,AB为直径,弦CE⊥AB于F,C是manfen5.com 满分网的中点,连接AD,交CE于点P.
(1)求证:PA=PC;
(2)若manfen5.com 满分网,CF=12,求AC和BC的长.

manfen5.com 满分网 查看答案
老师布置了一个探究活动作业:仅用一架天平和一个10克的砝码测量壹元硬币和伍角硬币的质量.(注:同种类的每枚硬币质量相同)
聪明的孔明同学找来足够多的壹元和伍角的硬币,经过探究得到以下两个探究记录:
记录天平左边天平右边状态
记录一5枚壹元硬币,一个10克的砝码10枚伍角硬币平衡
记录二15枚壹元硬币20枚伍角硬币,一个10克的砝码平衡
请你用所学的数学知识计算出一枚壹元硬币多少克,一枚伍角硬币多少克?
查看答案
已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.
求证:(1)∠DAE=∠B;
(2)△ABC≌△EAD.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.