满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4) (1)求这条...

manfen5.com 满分网如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<manfen5.com 满分网+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.
(1)利用待定系数法,将A,B的坐标代入解析式即可求得二次函数的解析式; (2)因为点B是y=x与y=x2-2x-4的交点,根据题意可求得N,M的坐标,则可表示出MN的长,通过纵坐标的绝对值的和求得; (3)把△BOM分成两个△OMN与△BMN,把MN作为两个三角形的底,通过点B,P的纵坐标表示出两个三角形的高即可求得三角形的面积. 【解析】 (1)由题意把点(1,-5)、(-2,4)代入y=x2+bx+c得: , 解得b=-2,c=-4,(3分) ∴此抛物线解析式为:y=x2-2x-4; (2)由题意得:, ∴x2-3x-4=0, 解得:x=4或x=-1(舍), ∴点B的坐标为(4,4), 将x=m代入y=x条件得y=m, ∴点N的坐标为(m,m), 同理点M的坐标为(m,m2-2m-4),点P的坐标为(m,0), ∴PN=|m|,MP=|m2-2m-4|, ∵0<m<+1, ∴MN=PN+MP=-m2+3m+4; (3)作BC⊥MN于点C, 则BC=4-m,OP=m, S=MN•OP+MN•BC, =2(-m2+3m+4), =-2(m-)2+12,(11分) ∵-2<0, ∴当m-=0,则m=时,S有最大值.
复制答案
考点分析:
相关试题推荐
操作:如图,在△ABC中,AC=BC,∠ACB=90°,将一块三角板的直角顶点放在斜边AB的中点P处,将三角板绕P点旋转,三角板的两直角边分别交射线AC、射线CB于D、E两点,图1、2、3是旋转三角板得到的图形中的三种.
探究:(Ⅰ)三角板绕P点旋转,观察线段PD和PE之间有什么数量关系?它们的关系为______,并以图2为例,加以证明;
(Ⅱ)如图4,若三角板直角顶点放在斜边AB上的M处,且manfen5.com 满分网.和前面一样操作,试问线段DM和ME之间的数量关系为______,先补全图4,然后加以证明.
manfen5.com 满分网
查看答案
某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要的时间与原计划生产450台机器所需要的时间相同,现在平均每天生产多少台机器?
查看答案
如图,在电线杆上的C处引拉线CE、CF固定电线杆,拉线CE和地面成60°角,在离电线杆6米的B处安置测角仪,在A处测得电线杆上C处的仰角为30°,已知测角仪高AB为1.5米,求拉线CE的长(结果保留根号).

manfen5.com 满分网 查看答案
在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A(2,4),B(4,2).点C是第一象限内的一个格点,由点C与线段AB组成一个以AB为底,且腰长为无理数的等腰三角形.
(1)画出△ABC,点C的坐标是______,△ABC的面积是______
(2)将△ABC绕点C旋转180°得到△A1B1C,连接AB1、BA1,试判断四边形AB1A1B是何种特殊四边形,请说明理由.

manfen5.com 满分网 查看答案
在直角坐标平面内,二次函数图象的顶点为A(1,-4),且过点B(3,0).
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与x轴的另一个交点的坐标.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.