满分5 > 初中数学试题 >

在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位...

在Rt△ABC中,∠C=90°,∠A=60°,BC=6,等边三角形DEF从初始位置(点E与点B重合,EF落在BC上,如图1所示)在线段BC上沿BC方向以每秒1个单位的速度平移,DE、DF分别与AB相交于点M、N.当点F运动到点C时,△DEF终止运动,此时点D恰好落在AB上,设△DEF平移的时间为x.
(1)求△DEF的边长;
(2)求M点、N点在BA上的移动速度;
(3)在△DEF开始运动的同时,如果点P以每秒2个单位的速度从D点出发沿DE⇒EF运动,最终运动到F点.若设△PMN的面积为y,求y与x的函数关系式,写出它的定义域;并说明当P点在何处时,△PMN的面积最大?
manfen5.com 满分网
(1)由题意知:当F与C点重合时D正好在AB上,此时三角形ACD中,∠ACD=90°-60°=30°,而∠A=60°,因此∠ADC=90°,可在直角三角形BCD中,根据∠B的正弦值及BC的长求出等边三角形的边长; (2)可设△DEF从初始位置移动x秒后得到△D1E1F1,那么在x秒内M点移动的距离就是BM的长,由于∠D1MN=∠BME1=∠ABC=30°,因此△BE1M是个等腰三角形,过E1作E1G⊥BM,那么BG=GM=BM,可在直角三角形BE1G中,根据BE1的长求出E1G(BE1的长就是△BDF平移的距离),由此可得出BM的长除以用的时间即可得出M点的速度.求N点的速度解法类似,过F作FH⊥D1F1,设垂足为H,那么FH就是N点移动的距离,同样可在直角三角形FHF1中求出FH的长,进而可得出其速度; (3)本题要先找出几个关键点:当P与M重合时,那么根据P的速度可表示出DM的长,而ME=BE为三角形平移的距离,据此可求出t=1.当P到达E点时,DP=DE,可求得此时t=. ①当P在DM之间时,即0≤x≤1,MN的长可在直角三角形DMN中,根据DM和∠DMN的余弦值求出,过P作PP1⊥MN于P1,那么PP1就是MN边上的高,可在直角三角形MPP1中根据MP的长和∠PMP1的正弦值求出(MP可根据DE-DP-ME来得出).据此可得出关于S,x函数关系式. ②当P在EM之间时,即1<x≤,可过P作PP2⊥AB与P2,那么PP2的长可在直角三角形PP2M中,根据PM的长和∠BME的正弦值求出,进而可根据三角形的面积公式求出S、x的函数关系式. ③当P在EF上运动时,即≤x≤3,解法同上. 根据上述三种情况得出的函数的性质及各自的自变量的取值范围,可求得S的最大值及对应的x的值. 【解析】 (1)当F点与C点重合时,如图1所示: ∵△DEF为等边三角形, ∴∠DFE=60° ∵∠B=30°, ∴∠BDF=90° ∴FD=BC=3; (2)过E点作EG⊥AB, ∵∠DEF=60°,∠B=30°, ∴∠BME=30°, ∴EB=EM 在Rt△EBG中,BG=x×cos30°=x, ∴BM=2BG=x, ∴M点在BA上的移动速度为=, F点作FH⊥F1D1,在Rt△FF1H中,FH=x×cos30°=x, 点N在BA上的移动速度为=; (3)在Rt△DMN中,DM=3-x,MN=(3-x)×cos30°==(3-x), 当P点运动到M点时,有2x+x=3, ∴x=1 ①当P点在DM之间运动时,过P点作PP1⊥AB,垂足为P1 在Rt△PMP1中,PM=3-x-2x=3-3x, ∴PP1=(3-3x)=(1-x), ∴y与x的函数关系式为:y=×(3-x)×(1-x)=(x2-4x+3)(0≤x≤1), ②当P点在ME之间运动时,过P点作PP2⊥AB,垂足为P2, 在Rt△PMP2中,PM=x-(3-2x)=3(x-1), ∴PP2=(1-x), ∴y与x的函数关系式为:y=×(3-x)×(1-x), =-(x2-4x+3)(1<x≤). ③当P点在EF之间运动时,过P点作PP3⊥AB,垂足为P3, 在Rt△PMP3中,PB=x+(2x-3)=3(x-1), ∴PP3=(x-1), ∴y与x的函数关系式为:y=×(3-x)×(x-1), =-(x2-4x+3)(≤x≤3), ∴y=-(x-2)2+, ∴当x=2时,y最大=, 而当P点在D点时,y=×3××=, ∵>, ∴当P点在D点时,△PMN的面积最大.
复制答案
考点分析:
相关试题推荐
如图,矩形ABCD中,AB=6cm,BC=8cm,将矩形沿着BD方向移动,设BB′=x.
(1)当x为多少时,才能使平移后的矩形与原矩形重叠部分的面积为24cm2
(2)依次连接A′A,AC,CC′,C′A′,四边形ACC′A′可能是菱形吗?若可能,求出x的值;若不可能,请说明理由.

manfen5.com 满分网 查看答案
如图是一座人行天桥的示意图,天桥的高是10米,坡面的倾斜角为45°.为了方便行人推车过天桥,市政部门决定降低坡度,使新坡面的倾斜角为30°,若新坡角下需留3米的人行道,问离原坡角10米的建筑物是否需要拆除?(参考数据:manfen5.com 满分网≈1.414,manfen5.com 满分网≈1.732.)
manfen5.com 满分网manfen5.com 满分网
查看答案
东海体育用品商场为了推销某一运动服,先做了市场调查,得到数据如下表:
卖出价格x(元/件)50515253
销售量p(件)500490480470
(1)以x作为点的横坐标,p作为纵坐标,把表中的数据,在图中的直角坐标系中描出相应的点,观察连接各点所得的图形,判断p与x的函数关系式;
(2)如果这种运动服的买入价为每件40元,试求销售利润y(元)与卖出价格x(元/件)的函数关系式(销售利润=销售收入-买入支出);
(3)在(2)的条件下,当卖出价为多少时,能获得最大利润?

manfen5.com 满分网 查看答案
邵阳市某校为落实“八荣八耻”的实施,开展了“孝敬父母,从做家务事做起”的活动.为了解活动实施情况,该校随机抽取九年级学生50名,调查他们一周(按七天计算)做家务所用的时间(单位:小时),得到一组数据,并绘制成下表.请根据该表完成下列各题.
时间
(单位:小时)
0.55~1.551.55~2.552.55~3.553.55以上
人数(单位:个)291182
(1)根据上表中的数据补全条形统计图;
(2)这组数据的中位数落在______范围内;
(3)根据以上信息判断,被调查的50名学生中,每周做家务所用的时间不超过1.55小时的学生所占百分比是______

manfen5.com 满分网 查看答案
已知关于x的方程x2+kx-2=0的一个解与方程manfen5.com 满分网解相同.
(1)求k的值;
(2)求方程x2+kx-2=0的另一个解.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.