如图,在直角坐标系中,已知点A(
,0),B(-
,0),以点A为圆心,AB为半径的圆与x轴相交于点B,C,与y轴相交于点D,E.
(1)若抛物线y=
x
2+bx+c经过C,D两点,求抛物线的解析式,并判断点B是否在该抛物线上;
(2)在(1)中的抛物线的对称轴上求一点P,使得△PBD的周长最小;
(3)设Q为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M,使得四边形BCQM是平行四边形?若存在,求出点M的坐标;若不存在,说明理由.
考点分析:
相关试题推荐
如图,在等腰梯形ABCD中,AB∥DC,∠DAB=45°,AB=10cm,CD=4cm.等腰直角三角形PMN的斜边MN=10cm,A点与N点重合,MN和AB在一条直线上,设等腰梯形ABCD不动,等腰直角三角形PMN沿AB所在直线以1cm/s的速度向右移动,直到点N与点B重合为止.
(1)等腰直角三角形PMN在整个移动过程中与等腰梯形ABCD重叠部分的形状由______形变化为______形;
(2)设当等腰直角三角形PMN移动x(s)时,等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积为y(cm
2),求y与x之间的函数关系式;
(3)当①x=4(s),②x=8(s)时,求等腰直角三角形PMN与等腰梯形ABCD重叠部分的面积.
查看答案
某住宅小区计划购买并种植500株树苗,某树苗公司提供如下信息:
信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等.
信息二:如下表:
树苗 | 杨树 | 丁香树 | 柳树 |
每棵树苗批发价格(元) | 3 | 2 | 3 |
两年后每棵树苗对空气的净化指数 | 0.4 | 0.1 | 0.2 |
设购买杨树、柳树分别x株、y株.
(1)用含x的代数式表示y;
(2)若购买这三种树苗的总费用为w元,要使这500株树苗两年后对该住宅小区的空气净化指数之和不低于120,试求w的取值范围.
查看答案
如图,在方格纸(每个小方格都是边长为1个单位长度的正方形)中,我们称每个小正方形的顶点为格点,以格点为顶点的图形称为格点图形.如图中的△ABC称为格点△ABC.
(1)如果A、D两点的坐标分别是(1,1)和(0,-1),请你在方格纸中建立平面直角坐标系,并直接写出点B、点C的坐标;
(2)请根据你所学过的平移、旋转或轴对称等知识,说明图中“格点四边形图
案”是如何通过“格点△ABC图案”变换得到的.
查看答案
如果小强邀请你玩一个抛掷两枚硬币的游戏,游戏规则如下:
抛出两个正面则你赢1分;抛出其它结果则小强赢1分;谁先到10分,谁就得胜.
请回答下列问题:
(1)这个游戏规则对你公平吗?请你用树状图分析所有可能出现的结果;
(2)若不公平,请你修改游戏规则,使它成为一个公平的游戏.
查看答案
为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?
查看答案