连接AD、OE,可得∠CDG=∠A,∠A+∠B=∠B+∠HGB=90°,所以,∠CDG=∠CGD,即CD=CG;在△OEB中,0E=2,0H=1,可得,EH=,所以,CE=,CF=3;又CD2=CE×CF,代入即可得出;
【解析】
连接AD、OE,如图,
∵AB是⊙O的直径,CD是⊙O切线,
∴∠CDG=∠A,∠A+∠B=∠B+∠HGB=90°,又∠HGB=∠CGD,
∴∠CDG=∠CGD,即CD=CG;
∵AB=4,EF⊥AB,OH=HB,
∴在直角△OEH中,OH=1,OE=2,
∴EH=HF=,又CE=EF,
∴CE=,CF=3,
又由CD2=CE×CF,
∴CG2=×3,
解得,CG=3.
故答案为3.