满分5 > 初中数学试题 >

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在...

如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B,且满足6a-3b=2.
(1)求抛物线的解析式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S=manfen5.com 满分网时,在抛物线上是否存在点R,使得以P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.

manfen5.com 满分网
(1)从图上可知抛物线经过点A、B点,结合已知条件可以求得A、B、C点的坐标,即可得出解析式; (2)根据勾股定理和已知条件,可以求得PB、BQ的长度,即可求出S与运动时间t之间的函数关系式(0≤t≤1); (3)首先根据S的值,求出t的值,继而求出P、Q点的坐标,然后分情况讨论:假设存在这样的R点,①R在BQ的右边,②R在BQ的左边③R在PB的下方,根据平行四边形的性质求出R点的坐标,代入抛物线解析式,看能否使等式成立,能的话,这种情况就存在. 【解析】 (1)据题意知:抛物线y=ax2+bx+c经过点A(0,-2),点B(2,-2), 而且6a-3b=2 则, 解得, ∴抛物线的解析式为:; (2)①由图象知:PB=2-2t,BQ=t, 则S=PQ2=PB2+BQ2=(2-2t)2+t2, 即S=5t2-8t+4(0≤t≤1), ②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形. ∵S=5t2-8t+4(0≤t≤1), ∴当S=时,5t2-8t+4=, 得20t2-32t+11=0, 解得t=,t=(不合题意,舍去), 此时点P的坐标为(1,-2),Q点的坐标为(2,-); 若R点存在,分情况讨论: [A]假设R在BQ的右边,这时QRPB,则,R的横坐标为3,R的纵坐标为- 即R(3,-),代入,左右两边相等, ∴这时存在R(3,-)满足题意. [B]假设R在BQ的左边,这时PRQB,则:R的横坐标为1,纵坐标为-, 即(1,-),代入,左右两边不相等,R不在抛物线上. [C]假设R在PB的下方,这时PRQB,则:R(1,-)代入,, 左右不相等, ∴R不在抛物线上. 综上所述,存在一点R(3,-)满足题意.
复制答案
考点分析:
相关试题推荐
某校八年级学生小丽,小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.
小丽:如果以10元/千克的价格销售,那么每天可售出300千克.
小强:如果以13元/千克的价格销售,那么每天可获取利润750元.
小红:通过调查验证,我发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.
(1)求y(千克)与x(元)(x>0)的函数关系式;
(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?[利润=销售量×(销售单价-进价)].
(3)一段时间后,发现这种水果每天的销售量均低于225千克,则此时该超市销售这种水果每天获取的利润最大是多少?
查看答案
如图,已知Rt△ABC,AB=AC,∠ABC的平分线BD交AC于点D,BD的垂直平分线分别交AB,BC于点E、F,CD=CG.
(1)请以图中的点为顶点(不增加其他的点)分别构造两个菱形和两个等腰梯形.那么,构成菱形的四个顶点是____________;构成等腰梯形的四个顶点是____________
(2)请你各选择其中一个图形加以证明.

manfen5.com 满分网 查看答案
如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,过A作AD⊥CD,D为垂足.
(1)求证:AC平分∠DAB.
(2)若AD=3,AC=manfen5.com 满分网,求AB的长.

manfen5.com 满分网 查看答案
我市某校积极开展阳光体育活动,师生每天锻炼1小时,老师对本校八年级段学生进行一分钟跳绳测试,并对跳绳次数进行统计,绘制了八(1)班一分钟跳绳次数的频数分布直方图和八年级其余班级一分钟跳绳次数的扇形统计图.已知在图1中,组中值为150次一组的频率为0.2.(说明:组中值为190次的组别为180≤次数<200)
请结合统计图完成下列问题:
(1)八(1)班的人数是______人;
(2)请把频数分布直方图补充完整;
(3)如果一分钟跳绳次数不低于120次的同学视为达标,八年级同学一分钟跳绳的达标率不低于90%,那么八年级同学至少有多少人?
manfen5.com 满分网
查看答案
如图,在Rt△OAB中,∠OAB=90°,且点B的坐标为(4,2),将△OAB绕点O逆时针旋转90°后得△OA1B1
(1)在图中作出△OA1B1并直接写出A1,B1的坐标;
(2)求点B旋转到点B1所经过的路线长(结果保留π).

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.